Home
Class 8
MATHS
Find x, if 8^(2-x) xx ((1)/(2))^(4-3x) =...

Find `x`, if `8^(2-x) xx ((1)/(2))^(4-3x) = (0.0625)^(x)`.

A

0

B

4

C

2

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 8^{(2-x)} \times \left(\frac{1}{2}\right)^{(4-3x)} = (0.0625)^{x} \), we will follow these steps: ### Step 1: Rewrite the bases in terms of powers of 2 First, we can express \( 8 \) and \( \frac{1}{2} \) in terms of base \( 2 \): - \( 8 = 2^3 \) - \( \frac{1}{2} = 2^{-1} \) Thus, we can rewrite the left side of the equation: \[ 8^{(2-x)} = (2^3)^{(2-x)} = 2^{3(2-x)} = 2^{6 - 3x} \] \[ \left(\frac{1}{2}\right)^{(4-3x)} = (2^{-1})^{(4-3x)} = 2^{-(4-3x)} = 2^{-(4 - 3x)} = 2^{3x - 4} \] Now, substituting these into the equation gives: \[ 2^{(6 - 3x)} \times 2^{(3x - 4)} = (0.0625)^{x} \] ### Step 2: Combine the left side Using the property of exponents \( a^m \times a^n = a^{m+n} \), we can combine the left side: \[ 2^{(6 - 3x) + (3x - 4)} = 2^{(6 - 4)} = 2^{2} \] ### Step 3: Simplify the right side Next, we need to simplify \( (0.0625)^{x} \). We can express \( 0.0625 \) as a power of \( 2 \): \[ 0.0625 = \frac{625}{10000} = \frac{25^2}{100^2} = \frac{(5^2)^2}{(10^2)^2} = \frac{5^4}{(2 \cdot 5)^4} = \frac{5^4}{2^4 \cdot 5^4} = \frac{1}{2^4} = 2^{-4} \] Thus, we have: \[ (0.0625)^{x} = (2^{-4})^{x} = 2^{-4x} \] ### Step 4: Set the exponents equal Now we have: \[ 2^{2} = 2^{-4x} \] Since the bases are the same, we can set the exponents equal to each other: \[ 2 = -4x \] ### Step 5: Solve for \( x \) Now, we solve for \( x \): \[ x = -\frac{2}{4} = -\frac{1}{2} \] ### Final Answer Thus, the value of \( x \) is: \[ \boxed{-\frac{1}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise Exercise (Multiple Choice Questions) LEVEL - 2|15 Videos
  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise Exercise (Match the Following)|3 Videos
  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise NCERT Section (Exercise 12.2)|17 Videos
  • DIRECT AND INVERSE PROPORTIONS

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|15 Videos
  • FACTORISATION

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|10 Videos

Similar Questions

Explore conceptually related problems

Find x, If 8^(x-2) xx (1/2)^(4-3x) = (0.0625)^(x)

Find x , if (8/3)^(2x+1)x(8/3)^5=(8/3)^(x+2)

Find x: 2^(3x)=8^(2x+1)

Find the domain of f(x)=sqrt((0.625)^(4-3x)-(1.6)^(x(x+8)))

Solve the following equations for x:4^(2x)=(1)/(32)( ii) 4^(x-1)x(0.5)^(3-2x)=((1)/(8))^(x)2^(3x-7)=256

Solve the following equations: (i) 3^(x+1)=27 xx 3^4 (ii)4^(2x)=(16 3)^(-6/y)=(sqrt(8))^2 (iii) 3^(x-1) xx 5^(2y-3)=225 (iv) 8^(x+1)=16^(x+2) and, (v) (1/2)^(3+x)=(1/4)^(3y) 4^(x-1) xx (0. 5)^(3-2x)=(1/8)^x sqrt(a/b)=(b/a)^(1-2x ) , where a , b are distinct positive primes.

If (4^(3))(4^(6))(4^(9))(4^(12))(4^(3x))=(0.0625)^(-54) the value of x is 7(b) 8(c) 9 (d) 10

(x^(2)+3x+2)^(2)-8(x^(2)+3x)-4=0

Solve :8xx2^(2x)+4xx2^(x+1)=1+2^(x)