Home
Class 8
MATHS
The value of (root(3)(81) + root(3)( - 1...

The value of `(root(3)(81) + root(3)( - 192) + root(3)( 375) )/( root(3) (24) )` is

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\sqrt[3]{81} + \sqrt[3]{-192} + \sqrt[3]{375}) / (\sqrt[3]{24})\), we will break it down step by step. ### Step 1: Simplify each cube root 1. **Calculate \(\sqrt[3]{81}\)**: - \(81 = 3^4\) - Therefore, \(\sqrt[3]{81} = \sqrt[3]{3^4} = 3^{4/3} = 3 \cdot 3^{1/3} = 3 \cdot \sqrt[3]{3}\) 2. **Calculate \(\sqrt[3]{-192}\)**: - \(-192 = -1 \cdot 192\) - Factor \(192\): \(192 = 2^6 \cdot 3\) - Thus, \(\sqrt[3]{-192} = \sqrt[3]{-1 \cdot 2^6 \cdot 3} = -1 \cdot \sqrt[3]{2^6} \cdot \sqrt[3]{3} = -1 \cdot 2^{6/3} \cdot \sqrt[3]{3} = -2^2 \cdot \sqrt[3]{3} = -4 \cdot \sqrt[3]{3}\) 3. **Calculate \(\sqrt[3]{375}\)**: - \(375 = 5^3 \cdot 3\) - Therefore, \(\sqrt[3]{375} = \sqrt[3]{5^3 \cdot 3} = 5 \cdot \sqrt[3]{3}\) 4. **Calculate \(\sqrt[3]{24}\)**: - \(24 = 2^3 \cdot 3\) - Thus, \(\sqrt[3]{24} = \sqrt[3]{2^3 \cdot 3} = 2 \cdot \sqrt[3]{3}\) ### Step 2: Substitute back into the expression Now substituting these values back into the expression: \[ \frac{(3 \cdot \sqrt[3]{3}) + (-4 \cdot \sqrt[3]{3}) + (5 \cdot \sqrt[3]{3})}{2 \cdot \sqrt[3]{3}} \] ### Step 3: Combine the terms in the numerator Combine the terms in the numerator: \[ 3 \cdot \sqrt[3]{3} - 4 \cdot \sqrt[3]{3} + 5 \cdot \sqrt[3]{3} = (3 - 4 + 5) \cdot \sqrt[3]{3} = 4 \cdot \sqrt[3]{3} \] ### Step 4: Simplify the overall expression Now the expression simplifies to: \[ \frac{4 \cdot \sqrt[3]{3}}{2 \cdot \sqrt[3]{3}} = \frac{4}{2} = 2 \] ### Final Answer The value of the expression is \(2\). ---
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise Exercise (Match the Following)|3 Videos
  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise Exercise (Assertion & Reason Type)|5 Videos
  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise Exercise (Multiple Choice Questions) LEVEL - 1|35 Videos
  • DIRECT AND INVERSE PROPORTIONS

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|15 Videos
  • FACTORISATION

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|10 Videos

Similar Questions

Explore conceptually related problems

The value of root (3)(500) xx root (3)(16) is

The value of root (3) (-91125) - root (3)(512) is

The value of (root(3)(3.5) + root(3)(2.5)) { (root(3)(3.5) )^2 - root(3) (8.75) + ( root(3)(2.5))^2} is

root(3)(135)-:root(3)(5)

Find the value of (root(3)(125)times root(3)(64))/(root(3)(125)-root(3)(64))

The value of root3(531441)/root3(729) is