Home
Class 8
MATHS
The value of (9^(x) (9^(x-1) )^(x) )/( 9...

The value of `(9^(x) (9^(x-1) )^(x) )/( 9^(x+1) . 3^(2x-2) ) { (729^((x)/(3)) )/( 81) }^(-x) div (3^(a) - 2^(3) . 3^(a-2) )/( 3^(a) - 3^(a-1) )` is

A

9

B

6

C

12

D

16

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \frac{9^x (9^{x-1})^x}{9^{x+1} \cdot 3^{2x-2}} \cdot \left(\frac{729^{\frac{x}{3}}}{81}\right)^{-x} \div \frac{3^a - 2^3 \cdot 3^{a-2}}{3^a - 3^{a-1}} \] we will break it down step by step. ### Step 1: Simplify the first part of the expression The first part is \[ \frac{9^x (9^{x-1})^x}{9^{x+1} \cdot 3^{2x-2}} \] We can simplify \( (9^{x-1})^x \) as follows: \[ (9^{x-1})^x = 9^{x(x-1)} = 9^{x^2 - x} \] Now, substituting this back into the expression gives: \[ \frac{9^x \cdot 9^{x^2 - x}}{9^{x+1} \cdot 3^{2x-2}} \] Using the property of exponents \( a^m \cdot a^n = a^{m+n} \): \[ = \frac{9^{x + x^2 - x}}{9^{x+1} \cdot 3^{2x-2}} = \frac{9^{x^2}}{9^{x+1} \cdot 3^{2x-2}} \] ### Step 2: Simplify the denominator Now, we can simplify the denominator: \[ 9^{x+1} = 9^x \cdot 9^1 = 9^x \cdot 9 \] Thus, we have: \[ = \frac{9^{x^2}}{9^x \cdot 9 \cdot 3^{2x-2}} = \frac{9^{x^2}}{9^{x+1} \cdot 3^{2x-2}} \] ### Step 3: Combine the powers of 9 Now, we can combine the powers of 9: \[ = \frac{9^{x^2}}{9^{x+1}} \cdot \frac{1}{3^{2x-2}} = 9^{x^2 - (x+1)} \cdot 3^{-(2x-2)} = 9^{x^2 - x - 1} \cdot 3^{-(2x-2)} \] ### Step 4: Simplify \( 729^{\frac{x}{3}} \) Next, we simplify \( \left(\frac{729^{\frac{x}{3}}}{81}\right)^{-x} \): Since \( 729 = 9^3 \) and \( 81 = 9^2 \): \[ \frac{729^{\frac{x}{3}}}{81} = \frac{(9^3)^{\frac{x}{3}}}{9^2} = \frac{9^{x}}{9^2} = 9^{x-2} \] Then, raising this to the power of \(-x\): \[ (9^{x-2})^{-x} = 9^{-x(x-2)} = 9^{-x^2 + 2x} \] ### Step 5: Combine everything Now, we can combine everything: \[ 9^{x^2 - x - 1} \cdot 9^{-x^2 + 2x} = 9^{(x^2 - x - 1) + (-x^2 + 2x)} = 9^{x - 1} \] ### Step 6: Simplify the division part Now, we need to simplify the division part: \[ \frac{3^a - 2^3 \cdot 3^{a-2}}{3^a - 3^{a-1}} = \frac{3^a - 8 \cdot 3^{a-2}}{3^a - 3^{a-1}} \] Factoring out \( 3^{a-2} \) from the numerator: \[ = \frac{3^{a-2}(3^2 - 8)}{3^{a-1}(3-1)} = \frac{3^{a-2}(9 - 8)}{3^{a-1}(2)} = \frac{3^{a-2}}{3^{a-1}} \cdot \frac{1}{2} = \frac{1}{2 \cdot 3^{1}} = \frac{1}{6} \] ### Step 7: Final expression Now, we have: \[ 9^{x-1} \cdot 6 \] Thus, the final value of the entire expression is: \[ 6 \cdot 9^{x-1} \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise Exercise (Match the Following)|3 Videos
  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise Exercise (Assertion & Reason Type)|5 Videos
  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise Exercise (Multiple Choice Questions) LEVEL - 1|35 Videos
  • DIRECT AND INVERSE PROPORTIONS

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|15 Videos
  • FACTORISATION

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|10 Videos

Similar Questions

Explore conceptually related problems

The value of: (9^(x)(9^(x-1)))^(x)/(9^(x+1).3^(2x-2)){(729^(x/3))/81}^(-x) + (3^(a) -2^(3) .3^(a-2))/(3^(a) -3^(a-1)) is:

The value of (3x ^(3) + 9x ^(2) + 27x)div 3x is

(1) / (3) x ^ (2) -2x-9

3 ^ (2x-3) -9 ^ (x-1) +27 ^ (2 (x) / (3)) = 675

Solve : 3(81)^(x) + 3 = 9^(x + 1) + 9^(x) .

(1) / (2x-3) + (1) / (x-5) = 1 (1) / (9)

Evalutate : int (x ^(3) +3x ^(2)+x+9)/((x ^(2) +1) (x ^(2) +3))dx.

Find each of the following products: (i) (x - 4)(x - 4) (ii) (2x - 3y)(2x - 3y) (iii) ((3)/(4) x - (5)/(6) y) ((3)/(4)x - (5)/(6) y) (iv) (x - (3)/(x)) (x - (3)/(x)) (v) ((1)/(3) x^(2) - 9) ((1)/(3) x^(2) - 9) (vi) ((1)/(2) y^(2) - (1)/(3) y) ((1)/(2) y^(2) - (1)/(3) y)

(x-3)/(9)-(x-2)/(10)=1