Home
Class 8
MATHS
The value of ((x^(a^2) )/( x^(b^2) ) )^(...

The value of `((x^(a^2) )/( x^(b^2) ) )^( ( 1)/( a+b) ) . ((x^(b^2) )/(x^( c^2) ) )^( (1)/( b+ c) ) . ((x^( c^2) )/( x^( a^2) ) )^( (1)/( c+a) ) ` is

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \left( \frac{x^{a^2}}{x^{b^2}} \right)^{\frac{1}{a+b}} \cdot \left( \frac{x^{b^2}}{x^{c^2}} \right)^{\frac{1}{b+c}} \cdot \left( \frac{x^{c^2}}{x^{a^2}} \right)^{\frac{1}{c+a}} \] we will simplify it step by step. ### Step 1: Simplify Each Fraction Using the property of exponents that states \(\frac{x^m}{x^n} = x^{m-n}\), we can simplify each fraction: 1. \(\frac{x^{a^2}}{x^{b^2}} = x^{a^2 - b^2}\) 2. \(\frac{x^{b^2}}{x^{c^2}} = x^{b^2 - c^2}\) 3. \(\frac{x^{c^2}}{x^{a^2}} = x^{c^2 - a^2}\) ### Step 2: Rewrite the Expression Now we can rewrite the entire expression using the simplified fractions: \[ \left( x^{a^2 - b^2} \right)^{\frac{1}{a+b}} \cdot \left( x^{b^2 - c^2} \right)^{\frac{1}{b+c}} \cdot \left( x^{c^2 - a^2} \right)^{\frac{1}{c+a}} \] ### Step 3: Apply the Power of a Power Rule Using the property of exponents that states \((x^m)^n = x^{m \cdot n}\), we can simplify further: 1. \(\left( x^{a^2 - b^2} \right)^{\frac{1}{a+b}} = x^{\frac{a^2 - b^2}{a+b}}\) 2. \(\left( x^{b^2 - c^2} \right)^{\frac{1}{b+c}} = x^{\frac{b^2 - c^2}{b+c}}\) 3. \(\left( x^{c^2 - a^2} \right)^{\frac{1}{c+a}} = x^{\frac{c^2 - a^2}{c+a}}\) ### Step 4: Combine the Exponents Now we can combine the exponents since the bases are the same: \[ x^{\frac{a^2 - b^2}{a+b} + \frac{b^2 - c^2}{b+c} + \frac{c^2 - a^2}{c+a}} \] ### Step 5: Simplify the Combined Exponent Now we will simplify the exponent: - The term \(\frac{a^2 - b^2}{a+b}\) can be factored using the identity \(a^2 - b^2 = (a-b)(a+b)\) to give \(a - b\). - Similarly, \(\frac{b^2 - c^2}{b+c} = b - c\) and \(\frac{c^2 - a^2}{c+a} = c - a\). Thus, we have: \[ x^{(a-b) + (b-c) + (c-a)} \] ### Step 6: Combine Like Terms Now, combine the terms in the exponent: \[ (a - b) + (b - c) + (c - a) = a - b + b - c + c - a = 0 \] ### Step 7: Final Result Since the exponent simplifies to 0, we have: \[ x^0 = 1 \] Thus, the value of the original expression is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise Exercise (Match the Following)|3 Videos
  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise Exercise (Assertion & Reason Type)|5 Videos
  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise Exercise (Multiple Choice Questions) LEVEL - 1|35 Videos
  • DIRECT AND INVERSE PROPORTIONS

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|15 Videos
  • FACTORISATION

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|10 Videos

Similar Questions

Explore conceptually related problems

Show : ( x^(a^2)/ x^( b^2 ) )^ (1/( a+b)) times ( x^(b^2)/ x^( c^2 )) ^ ( 1/( b+c )) times ( x^(c^2)/ x^( a^2 ) )^ (1/( c+a)) = 1

The value ((x^a)/(x^b))^((a^2 + ab + b^2)) ((x^b)/(x^c))^((b^2 + bc + c^2))((x^c)/(x^a))^((c^2 + ca + a^2)) is :

Simplify :((x^(a))/(x^(b)))^(a^(2)+b^(2)+ab)xx((x^(b))/(x^(c)))^(b^(2)+c^(2)+bc)xx((x^(c))/(x^(a)))^(c^(2)+a^(2))

((x^(a))/(x^(-b)))^(a^(2)-ab+b^(2))times((x^(b))/(x^(-c)))^(b^(2)-bc+c^(2))times((x^(c))/(x^(-a)))^(c^(2)-ca+a^(2))

Prove that. (i) sqrt(x^(-1) y) .sqrt(y^(-1) z) . Sqrt(z^(-1) x) = 1 (ii) ((1)/(x^(a-b)))^((1)/(a-c)).((1)/(x^(b-c))).((1)/(x^(c-b)))^((1)/(c-b))= 1 (iii) (x^(a(b-c)))/(x^(b(a-c))) div ((x^(b))/(x^(a))) (iv) ((x^(a+b))^(2)(x^(b+c))^(2)(x^(c+a))^(2))/((x^(a)x^(b)x^(c))^(4))

The value of x^(a-b)times x^(b-c)times x^(c-a) is a. 1 b. 2 c. x d. 0

The value of (x^a/x^b)^(a^2+ab+b^2)(x^b/x^c)^(b^2+bc+c^2)(x^c/x^a)^(c^2+ca+a^2)