Home
Class 8
MATHS
Evaluate : (9^(-1) xx 5^(3) )/( 3^(-3) )...

Evaluate : `(9^(-1) xx 5^(3) )/( 3^(-3) )`

A

370

B

315

C

375

D

400

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \((9^{-1} \times 5^{3}) / (3^{-3})\), we will follow these steps: ### Step 1: Rewrite Negative Exponents Recall that \(a^{-b} = \frac{1}{a^b}\). Therefore, we can rewrite \(9^{-1}\) and \(3^{-3}\): \[ 9^{-1} = \frac{1}{9} \quad \text{and} \quad 3^{-3} = \frac{1}{3^3} \] So, the expression becomes: \[ \frac{\left(\frac{1}{9} \times 5^{3}\right)}{\left(\frac{1}{3^{3}}\right)} \] ### Step 2: Change Division to Multiplication When we divide by a fraction, we can multiply by its reciprocal: \[ \frac{1}{9} \times 5^{3} \times 3^{3} \] ### Step 3: Calculate \(5^3\) and \(3^3\) Now, we calculate \(5^3\) and \(3^3\): \[ 5^3 = 125 \quad \text{and} \quad 3^3 = 27 \] ### Step 4: Substitute Values Substituting these values back into the expression gives: \[ \frac{1}{9} \times 125 \times 27 \] ### Step 5: Simplify Now, we can simplify: \[ \frac{125 \times 27}{9} \] ### Step 6: Calculate \(125 \times 27\) Calculating \(125 \times 27\): \[ 125 \times 27 = 3375 \] ### Step 7: Divide by 9 Now we divide \(3375\) by \(9\): \[ \frac{3375}{9} = 375 \] ### Final Answer Thus, the value of the expression \((9^{-1} \times 5^{3}) / (3^{-3})\) is: \[ \boxed{375} \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise Exercise (Subjective Problems) Very Short Answer Type|16 Videos
  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise Exercise (Subjective Problems) Short Answer Type|12 Videos
  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise Exercise (Assertion & Reason Type)|5 Videos
  • DIRECT AND INVERSE PROPORTIONS

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|15 Videos
  • FACTORISATION

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate: (i) ((5)/(9)) ^(-2) xx ((3)/(5)) ^(-3) xx ((3)/(5)) ^(0) (ii) ((-3)/(5)) ^(-4) xx ((-2)/(5))^(2) (iii) ((-2)/(3)) ^(-3) xx ((-2)/(3)) ^(-2)

Evaluate (5/9)^(-2)xx(3/5)^(-3)xx(3/5)^0

Evaluate : [((1)/(2))^(3)-((1)/(3))^(2)]times((3)/(5))^(2)times((-2)/(3))^(3)

Evaluate: (3^(3))xx(243)^(-(2)/(3))xx9^(-(1)/(3))

Evaluate : (( 5 )^3 times ( 3 )^3 )/ ( ( 2 )^5 times ( 2 )^4 times ( 7^5 )^3)

Evaluate: (i) ((5)/(3)) ^(2 ) xx ((5)/(3)) ^(2) (ii) ((5)/(6))^(6) xx ((5)/(6)) ^(-4) (iii) ((2)/(3)) ^(-3) xx ((2)/(3)) ^(-2) (iv) ((9)/(8)) ^(-3) xx ((9)/(8)) ^(2)

Evaluate: 1.5^(3)-0.9^(3)-0.6^(3)

Evaluate : ( 9^3 times a^5 times b^2 ) / ( 3^6 times a^3 times b )

Evaluate : 4^(1/3 ) times [ 2^(1/3 ) times 3^(1/2) ] ÷ 9^(1/4 )

Evaluate : (5/7)^3 times ( 5/7 )^(-6) times ( 1/3 )^(-2 ) times ( 3/5 )^-2