Home
Class 8
MATHS
Evaluate : ((1)/(2))^(-4) xx ((1)/(2))^(...

Evaluate : `((1)/(2))^(-4) xx ((1)/(2))^(-8) xx ((1)/(2))^(2) + ((1)/(4))^(2) xx ((1)/(4) )^(-6) xx ((1)/(4))^(2)`

A

`((1)/(2))^(-10)`

B

`((1)/(2))^(12) xx ((1)/(4))^(-1)`

C

`((1)/(2))^(-14) + ((1)/(4))^(0)`

D

`((1)/(2))^(12)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \(\left(\frac{1}{2}\right)^{-4} \times \left(\frac{1}{2}\right)^{-8} \times \left(\frac{1}{2}\right)^{2} + \left(\frac{1}{4}\right)^{2} \times \left(\frac{1}{4}\right)^{-6} \times \left(\frac{1}{4}\right)^{2}\), we can follow these steps: ### Step 1: Simplify the first part of the expression We start with the first part of the expression: \[ \left(\frac{1}{2}\right)^{-4} \times \left(\frac{1}{2}\right)^{-8} \times \left(\frac{1}{2}\right)^{2} \] Since the bases are the same, we can add the exponents: \[ = \left(\frac{1}{2}\right)^{-4 + (-8) + 2} \] Calculating the exponent: \[ -4 - 8 + 2 = -10 \] Thus, we have: \[ = \left(\frac{1}{2}\right)^{-10} \] ### Step 2: Simplify the second part of the expression Now, we simplify the second part: \[ \left(\frac{1}{4}\right)^{2} \times \left(\frac{1}{4}\right)^{-6} \times \left(\frac{1}{4}\right)^{2} \] Again, since the bases are the same, we can add the exponents: \[ = \left(\frac{1}{4}\right)^{2 + (-6) + 2} \] Calculating the exponent: \[ 2 - 6 + 2 = -2 \] Thus, we have: \[ = \left(\frac{1}{4}\right)^{-2} \] ### Step 3: Combine the results Now we combine both parts: \[ \left(\frac{1}{2}\right)^{-10} + \left(\frac{1}{4}\right)^{-2} \] ### Step 4: Convert negative exponents to positive Using the property \(a^{-b} = \frac{1}{a^b}\): \[ \left(\frac{1}{2}\right)^{-10} = 2^{10} \] \[ \left(\frac{1}{4}\right)^{-2} = 4^{2} \] ### Step 5: Calculate the powers Calculating \(2^{10}\) and \(4^{2}\): \[ 2^{10} = 1024 \] \[ 4^{2} = 16 \] ### Step 6: Add the results Now we add the two results: \[ 1024 + 16 = 1040 \] ### Final Answer Thus, the value of the expression is: \[ \boxed{1040} \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise Exercise (Subjective Problems) Very Short Answer Type|16 Videos
  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise Exercise (Subjective Problems) Short Answer Type|12 Videos
  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise Exercise (Assertion & Reason Type)|5 Videos
  • DIRECT AND INVERSE PROPORTIONS

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|15 Videos
  • FACTORISATION

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate ((-1)/(4)) ^(-3) xx ((-1)/(4)) ^(2)

Evaluate [((-2)/3)]^(-3)xx[1/4]^(-4) xx 3^(-1)xx1/6

((4)/(9))^(-2)times((1)/(4))^(-2)times(1)/(3^(-2))times((17)/(18))^(0)

Simplify (i) 3^((1)/(4)) xx 5^((1)/(4)) (ii) 2^((5)/(8)) xx 3^((5)/(8)) (iii) 6^((1)/(2)) xx 7^((1)/(2))

1 (4)/(5) xx 2 (2)/(3) xx 3 (1)/(3) xx (1)/(4) =

Evaluate (-1)/3 xx (1/2+1/4)xx((-1)/3 xx 1/2)+((-1)/3 xx 1/4)

1 4/(8)-:1(2)/(8)xx1(2)/(4)+2(1)/(2)-1(1)/(4)

Evaluate : (a^(2n+1) xx a^((2n+1)(2n-1)))/(a^(n(4n-1)) xx (a^2)^(2n+3)