Home
Class 8
MATHS
Find the value of x if 4^(2x -3) = 4^(2)...

Find the value of `x` if `4^(2x -3) = 4^(2) xx 2^(3) xx 4`.

A

`0`

B

`4`

C

`(15)/(4)`

D

`(-9)/(8)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 4^{2x - 3} = 4^2 \times 2^3 \times 4 \), we can follow these steps: ### Step 1: Rewrite the equation using powers of 2 We know that \( 4 = 2^2 \). Therefore, we can rewrite the left side and the right side of the equation in terms of base 2. \[ 4^{2x - 3} = (2^2)^{2x - 3} \] Using the power of a power property \((a^m)^n = a^{m \cdot n}\), we have: \[ (2^2)^{2x - 3} = 2^{2(2x - 3)} = 2^{4x - 6} \] ### Step 2: Simplify the right side Now, let's simplify the right side of the equation: \[ 4^2 \times 2^3 \times 4 = 4^2 \times 4 \times 2^3 \] Again, rewriting \(4\) as \(2^2\): \[ = (2^2)^2 \times 2^3 \times 2^2 \] Using the power of a power property again: \[ = 2^{2 \cdot 2} \times 2^3 \times 2^2 = 2^4 \times 2^3 \times 2^2 \] ### Step 3: Combine the powers on the right side Now, we can combine the powers on the right side: \[ = 2^{4 + 3 + 2} = 2^9 \] ### Step 4: Set the exponents equal to each other Now we have: \[ 2^{4x - 6} = 2^9 \] Since the bases are the same, we can set the exponents equal to each other: \[ 4x - 6 = 9 \] ### Step 5: Solve for \(x\) Now, we solve for \(x\): \[ 4x = 9 + 6 \] \[ 4x = 15 \] \[ x = \frac{15}{4} \] ### Final Answer Thus, the value of \(x\) is: \[ \boxed{\frac{15}{4}} \] ---
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise Exercise (Subjective Problems) Very Short Answer Type|16 Videos
  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise Exercise (Subjective Problems) Short Answer Type|12 Videos
  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise Exercise (Assertion & Reason Type)|5 Videos
  • DIRECT AND INVERSE PROPORTIONS

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|15 Videos
  • FACTORISATION

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|10 Videos

Similar Questions

Explore conceptually related problems

Find the value of. (i) (3^@+4^(-1)) xx 2^2 (ii) (2^(-1)xx 4^(-1))-: 2^(-1) (iii) (1/2)^-2 + (1/3)^-2 + (1/4)^-2 (iv) (3^-1 + 4^-1+ 5^(-1))^0 (v) {((-2)/3)^-2}^2

2.A) Find the value of 4^5 xx 2^3 xx 2^(-6)

Find Value of:- 4+3 xx 4 +3 xx 4^(2) +3xx 4^(3) +3 xx 4^(4) +3 xx 4^(5) = ? (a) 5 xx 4^(5) (b) 9xx 4^(4) (c) 4^(6) (d) 10 xx 4^(4)

Find the value of x for which ((5)/(3)) ^(-4) xx ((5)/(3)) ^(-5) = ((5)/(3)) ^(3x)

Find the value of x for which ((4)/(9)) ^(4) xx ((4)/(9)) ^(-7) = ((4)/(9)) ^(2x -1)

Find the value of : (-1) times (-2) times (-3) times (-4)

Find the value of x if x=root(4)(((72*14)^(5)xx sqrt(45))/((2*8)^(3)xx sqrt(32)))

Find the value of : 2xx3xx4-:2^(@)xx3^(@)xx4^(@)

Find the value of x : ( 3/4 )^x = ( 3/4 )^4 times ( 3/4 )^1 times ( 3/4 )^5