Home
Class 8
MATHS
Simplify : ((xyz)^4)/((x^(-2) y^(3) )^(-...

Simplify : `((xyz)^4)/((x^(-2) y^(3) )^(-3) ((1)/(z^2) )^6) ( x ne 0, y ne 0 , z ne 0)`.

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \(\frac{(xyz)^4}{(x^{-2} y^{3})^{-3} \left(\frac{1}{z^2}\right)^{6}}\), we will follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \frac{(xyz)^4}{(x^{-2} y^{3})^{-3} \left(\frac{1}{z^2}\right)^{6}} \] ### Step 2: Simplify the numerator The numerator \((xyz)^4\) can be expanded using the property of exponents: \[ (xyz)^4 = x^4 y^4 z^4 \] ### Step 3: Simplify the denominator Now, simplify the denominator: 1. For \((x^{-2} y^{3})^{-3}\): \[ (x^{-2} y^{3})^{-3} = x^{6} y^{-9} \] (using the property \(a^{-m} = \frac{1}{a^m}\)) 2. For \(\left(\frac{1}{z^2}\right)^{6}\): \[ \left(\frac{1}{z^2}\right)^{6} = z^{-12} \] Combining these, the denominator becomes: \[ x^{6} y^{-9} z^{-12} \] ### Step 4: Combine the numerator and denominator Now we can write the entire expression: \[ \frac{x^4 y^4 z^4}{x^{6} y^{-9} z^{-12}} \] ### Step 5: Apply the property of exponents Using the property \(\frac{a^m}{a^n} = a^{m-n}\), we simplify each variable: 1. For \(x\): \[ x^{4 - 6} = x^{-2} \] 2. For \(y\): \[ y^{4 - (-9)} = y^{4 + 9} = y^{13} \] 3. For \(z\): \[ z^{4 - (-12)} = z^{4 + 12} = z^{16} \] ### Step 6: Write the final expression Combining all these results, we have: \[ \frac{x^{-2} y^{13} z^{16}}{1} = \frac{y^{13} z^{16}}{x^{2}} \] Thus, the simplified expression is: \[ \frac{y^{13} z^{16}}{x^{2}} \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise Exercise (Subjective Problems) Long Answer Type|9 Videos
  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise Exercise (Integer/Numerical Value Type)|10 Videos
  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise Exercise (Subjective Problems) Very Short Answer Type|16 Videos
  • DIRECT AND INVERSE PROPORTIONS

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|15 Videos
  • FACTORISATION

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|10 Videos

Similar Questions

Explore conceptually related problems

( 9)/(x) - ( 4)/( y) = 8 , ( 13)/(x) + ( 7)/(y) = 101 ( x ne 0, y ne 0 )

Solve for x and y : (xy )/(x + y ) = ( 6)/(5), (xy)/( y - x) = 6 (x ne 0, y ne 0 and x ne y ) .

Solve for x and y : (1)/(2x) - (1)/(y) = - 1, (1)/(x) + (1)/(2y)= 8 ( x ne 0 , y ne 0 )

( 1 ) /(x) + (1 ) /( y) = 7 , ( 2)/(x) + ( 3) /( y) = 17 (x ne 0, y ne 0 ) .

( 5)/(x)- ( 3) /( y ) = 1 , ( 3) /( 2 x ) + ( 2) /( 3y ) = 5 ( x ne 0 , y ne 0 )

Solve for x : (1)/(a + b + x) = (1)/(a) + (1)/(b) + (1)/(x) , a ne b ne 0 , x ne 0 , x ne -(a + b)

(x+ (1)/(y)) = (y+ (1)/(z))= (z + (1)/(x)) and (x ne y ne z) find xyz= ?

( 3 ) /(x) - (1 ) /( y) + 9 = 0 , (2)/(x) + ( 3)/( y) = 5 ( x ne 0 , y ne 0 )