Home
Class 8
MATHS
1/(1+a^(n-m)) + 1/(1+a^(m-n))...

`1/(1+a^(n-m))` + `1/(1+a^(m-n))`

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise Exercise (Subjective Problems) Long Answer Type|9 Videos
  • DIRECT AND INVERSE PROPORTIONS

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|15 Videos
  • FACTORISATION

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|10 Videos

Similar Questions

Explore conceptually related problems

(1)/(1+a^(m-m))+(1)/(1+a^(m-n))=? a.0 b.(1)/(2) c.1

What is ( 1)/( a^(m-n)-1) + ( 1)/( a^(n-m)-1) equal to ?

Solve 1/(1+p^(m-n))+1/(1+p^(n-m))

If y=1/(1+x^(n-m)+x^(p-m))+1/(1+x^(m-n)+x^(p-n))+1/(1+x^(m-p)+x^(n-p)) then (dy)/(dx) at e^m^n^p is equal to: e^(m n p) (b) e^(m n//p) (c) e^(n p//m) (d) none

Solve the followings : (a^(m-n))^(1) xx (a^(n-1))^m xx (a^(1 - m))^(n)

Simplify the following: 1/(1+x^(m-n)+x^(m-p))+(1)/(1+x^(n-p)+x^(n-m))+(1)/(1+x^(n-m)+x^(p-n))

lim_(x rarr0)((2^(m)+x)^((1)/(m))-(2^(n)+x)^((1)/(n)))/(x) is equal to (1)/(m2^(m))-(1)/(n2^(n)) (b) (1)/(m2^(m))+(1)/(n2^(n))(1)/(m2^(-m))-(1)/(n2^(-n))( d) (1)/(m2^(-m))+(1)/(n2^(-n))

lim_(x->0) [(2^m +x)^(1/m)-(2^m+x)^(1/n)]/x a) 1/(m2^m)-1/(n2^n) b) 1/(m2^(m-1))-1/(n2^(n-1)) c) m/2^(m-1)-n/2^(n-1) d) none of these

If y=(1)/(1+x^(n-m)+x^(p-m))+(1)/(1+x^(m-n)+x^(p-m))+(1)/(1+x^(m-p)+x^(n-p)) the (dy)/(dx) is

The HCF of (a -1) (a^(3) + m) and (a +1) (a^(3) -n) and (a +1) (a^(2) -n) " is " a^(2) -1 , then the value of m and n are ______