Home
Class 9
MATHS
If x = 7 + 4 sqrt3 then value of sqrtx +...

If `x = 7 + 4 sqrt3` then value of `sqrtx + (1)/(x)` is

A

`4`

B

`sqrtx`

C

`sqrt3`

D

`2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \sqrt{x} + \frac{1}{x} \) given that \( x = 7 + 4\sqrt{3} \). ### Step-by-step Solution: 1. **Substitute the value of x**: \[ \sqrt{x} + \frac{1}{x} = \sqrt{7 + 4\sqrt{3}} + \frac{1}{7 + 4\sqrt{3}} \] 2. **Rationalize the second term**: To simplify \( \frac{1}{7 + 4\sqrt{3}} \), we multiply the numerator and denominator by the conjugate \( 7 - 4\sqrt{3} \): \[ \frac{1}{7 + 4\sqrt{3}} \cdot \frac{7 - 4\sqrt{3}}{7 - 4\sqrt{3}} = \frac{7 - 4\sqrt{3}}{(7 + 4\sqrt{3})(7 - 4\sqrt{3})} \] 3. **Calculate the denominator**: Using the difference of squares: \[ (7 + 4\sqrt{3})(7 - 4\sqrt{3}) = 7^2 - (4\sqrt{3})^2 = 49 - 48 = 1 \] Therefore, the expression simplifies to: \[ \frac{1}{7 + 4\sqrt{3}} = 7 - 4\sqrt{3} \] 4. **Combine the terms**: Now we can write: \[ \sqrt{7 + 4\sqrt{3}} + (7 - 4\sqrt{3}) \] 5. **Calculate \( \sqrt{7 + 4\sqrt{3}} \)**: We can express \( \sqrt{7 + 4\sqrt{3}} \) in a simpler form. Let's assume: \[ \sqrt{7 + 4\sqrt{3}} = a + b\sqrt{3} \] Squaring both sides: \[ 7 + 4\sqrt{3} = a^2 + 3b^2 + 2ab\sqrt{3} \] This gives us two equations: \[ a^2 + 3b^2 = 7 \quad \text{(1)} \] \[ 2ab = 4 \quad \text{(2)} \] From equation (2), we find: \[ ab = 2 \quad \Rightarrow \quad b = \frac{2}{a} \] Substituting \( b \) in equation (1): \[ a^2 + 3\left(\frac{2}{a}\right)^2 = 7 \] \[ a^2 + \frac{12}{a^2} = 7 \] Multiplying through by \( a^2 \): \[ a^4 - 7a^2 + 12 = 0 \] Letting \( y = a^2 \): \[ y^2 - 7y + 12 = 0 \] Factoring: \[ (y - 3)(y - 4) = 0 \quad \Rightarrow \quad y = 3 \quad \text{or} \quad y = 4 \] Thus, \( a^2 = 3 \) or \( a^2 = 4 \), giving \( a = \sqrt{3} \) or \( a = 2 \). If \( a = 2 \), then \( b = 1 \) (since \( ab = 2 \)). Thus: \[ \sqrt{7 + 4\sqrt{3}} = 2 + \sqrt{3} \] 6. **Final Calculation**: Now substituting back: \[ \sqrt{7 + 4\sqrt{3}} + (7 - 4\sqrt{3}) = (2 + \sqrt{3}) + (7 - 4\sqrt{3}) = 9 - 3\sqrt{3} \] ### Final Answer: \[ \sqrt{x} + \frac{1}{x} = 9 - 3\sqrt{3} \]
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEM

    CENGAGE|Exercise TEST YOURSELF (LEVEL 3) (OLYMPIAD AND NTSE LEVEL EXERCISES) |10 Videos
  • NUMBER SYSTEM

    CENGAGE|Exercise TEST YOURSELF (LEVEL 2) |25 Videos
  • LAWS OF EXPONENTS AND LOGARITHMS

    CENGAGE|Exercise OLYMPIAD AND NTSE LEVEL EXERCISES|10 Videos
  • PYTHAGORAS' THEOREM

    CENGAGE|Exercise OLYMPAID AND NTSE LEVEL EXERCISES |6 Videos

Similar Questions

Explore conceptually related problems

If x = 7 - 4 sqrt 3 , then the value of (x + 1/x) is :

If x = 2 + sqrt3 then the value of sqrtx + 1/sqrtx is

If x = 3 + 2 sqrt2 , find the value sqrtx - (1)/(sqrtx)

If sqrt(3x - 7) + sqrt(3x + 7) = 4 + sqrt(2) then value of x + 1/x is

If x=7-4sqrt(3), then the value of x+(1)/(x) is:

If (3(x^2 +1)-7x)/3x =6, x ≠ 0 , then the value of sqrtx + 1/(sqrtx) is: यदि (3(x^2 +1)-7x)/3x =6, x ≠ 0 , है, तो sqrtx + 1/(sqrtx) का मान क्या होगा?

CENGAGE-NUMBER SYSTEM -TEST YOURSELF (LEVEL 3)
  1. If the number 2x 348 is divisible by 3 then the value of x CANNOT be

    Text Solution

    |

  2. If the number 34x576 is divisible by 4 then the value of x CANNOT be

    Text Solution

    |

  3. The multiplicative inverse of 0 is

    Text Solution

    |

  4. If x = sqrt2 + 1 then value of x ^(3) - (1)/(x ^(3)) is

    Text Solution

    |

  5. Square root of (5)/(2) - sqrt 6 is

    Text Solution

    |

  6. For x gt 0, then value of x sqrt (x sqrt (x sqrt x...)) is

    Text Solution

    |

  7. If x + sqrt3 = sqrt ( 7 + 4 sqrt3) then the value of x is

    Text Solution

    |

  8. If a = sqrt13 + sqrt12 and b = sqrt14 + sqrt11 then which of the follo...

    Text Solution

    |

  9. sqrt (10 + sqrt 91) + sqrt (10 - sqrt 91) is equal to

    Text Solution

    |

  10. The value of 3 + (1)/( 3 + (1)/( 2- (1)/(4))) is

    Text Solution

    |

  11. The value of 2- (1)/( 20 (1)/( 2- (1)/(2-....))) is

    Text Solution

    |

  12. The value of (sqrt14)/(sqrt (6 + sqrt35 )+ sqrt (6 - sqrt35)) is

    Text Solution

    |

  13. The value of sqrt (13 + 4 sqrt10) - sqrt (13 - 4 sqrt10) is

    Text Solution

    |

  14. Then the value of sqrt (2 + sqrt (2 + sqrt (2 + ...))) is

    Text Solution

    |

  15. Square root of (x -2) - sqrt (x ^(2)- 4x + 3) is

    Text Solution

    |

  16. The square root of x ^(2) + x + 4 + 2 sqrt (x ^(3) + 4x) is

    Text Solution

    |

  17. If x = 7 + 4 sqrt3 then value of sqrtx + (1)/(x) is

    Text Solution

    |

  18. Value of 0.bar(76) + 0. bar (34) is

    Text Solution

    |

  19. If x = sqrt13 - sqrt11 and y = sqrt35 - sqrt33 then which of the follo...

    Text Solution

    |

  20. The value of (1)/( 3 + sqrt2) - (1)/( 3 - sqrt2) is ( sqrt2 = 1. 414)

    Text Solution

    |