Home
Class 9
MATHS
Write (a ^(2) - b ^(2))/( a ^(2) - 3 ab ...

Write `(a ^(2) - b ^(2))/( a ^(2) - 3 ab + 2b ^(2))` in the simplest form

A

`((a + b) ^(2))/((a - 2b))`

B

`(a +b)/( a - 2b)`

C

`((a - b))/( (a - 2b))`

D

`((a + b ))/( (a + 2b ))`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \((a^2 - b^2)/(a^2 - 3ab + 2b^2)\), we can follow these steps: ### Step 1: Factor the Numerator The numerator is \(a^2 - b^2\). We can use the difference of squares formula, which states that \(x^2 - y^2 = (x - y)(x + y)\). So, we can factor the numerator as: \[ a^2 - b^2 = (a - b)(a + b) \] ### Step 2: Factor the Denominator The denominator is \(a^2 - 3ab + 2b^2\). We need to factor this quadratic expression. We look for two numbers that multiply to \(2b^2\) (the product of the last term) and add to \(-3ab\) (the coefficient of the middle term). The numbers \(-2b\) and \(-b\) satisfy these conditions: - \(-2b \times -b = 2b^2\) - \(-2b + -b = -3b\) Thus, we can factor the denominator as: \[ a^2 - 3ab + 2b^2 = (a - 2b)(a - b) \] ### Step 3: Rewrite the Expression Now we can rewrite the original expression using the factored forms: \[ \frac{(a - b)(a + b)}{(a - 2b)(a - b)} \] ### Step 4: Cancel Common Factors We notice that \((a - b)\) is a common factor in both the numerator and the denominator, so we can cancel it out: \[ \frac{(a + b)}{(a - 2b)} \] ### Final Simplified Form Thus, the expression in its simplest form is: \[ \frac{a + b}{a - 2b} \] ---
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS AND POLYNOMIALS

    CENGAGE|Exercise TEST YOURSELF (LEVEL 3) (MULTIPLE CHOICE QUESTIONS) |40 Videos
  • CIRCLES

    CENGAGE|Exercise OLYMPIAD AND NTSE LEVEL EXERCISES|6 Videos

Similar Questions

Explore conceptually related problems

(a ^ (2) -b ^ (2)) / (ab) - (a ^ (3) -b ^ (3)) / (a ^ (2) -b ^ (2))

Subtract: 5a^(2) - 7ab + 5b^(2) "from" 3ab - 2a^(2) - 2b^(2)

If a * b= a^(2) + ab + b^(2) , then find the value of 2 * 3?

Factorise the using the identity a ^(2) - 2 ab + b ^(2) = (a -b) ^(2). 4a ^(2) - 4 ab + b ^(2)