Home
Class 9
MATHS
Study the given statements. Statement ...

Study the given statements.
Statement I: `(a)/(x + a) + (b)/( x -a) - (c)/( x ^(2) - a ^(2))= (a (x-a) + b (x +a) - c)/(x ^(2) - a ^(2))`
Statement II: `3 abc - a ^(3) - b ^(3) - c ^(3) = (1)/(2) (a + b + c) [(a - b) ^(2) + (b -c) ^(2) + (c -a) ^(2) ]`
Which of the following options holds ?

A

Both Statement I and Statement II are true.

B

Statement I is true and Statement II is false.

C

Statement I is false false and Statement II is true.

D

Both Statement I and Statement II are false.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we will analyze both statements step by step. ### Statement I: We need to verify if: \[ \frac{a}{x + a} + \frac{b}{x - a} - \frac{c}{x^2 - a^2} = \frac{a(x - a) + b(x + a) - c}{x^2 - a^2} \] **Step 1: Find a common denominator for the left-hand side (LHS).** The common denominator for the fractions is \( (x + a)(x - a) = x^2 - a^2 \). **Step 2: Rewrite each term with the common denominator.** \[ \frac{a}{x + a} = \frac{a(x - a)}{(x + a)(x - a)} = \frac{a(x - a)}{x^2 - a^2} \] \[ \frac{b}{x - a} = \frac{b(x + a)}{(x - a)(x + a)} = \frac{b(x + a)}{x^2 - a^2} \] \[ -\frac{c}{x^2 - a^2} = -\frac{c}{x^2 - a^2} \] **Step 3: Combine the fractions.** \[ \frac{a(x - a) + b(x + a) - c}{x^2 - a^2} \] **Step 4: Compare LHS and RHS.** Both sides simplify to: \[ \frac{a(x - a) + b(x + a) - c}{x^2 - a^2} \] Thus, Statement I is **True**. ### Statement II: We need to verify if: \[ 3abc - a^3 - b^3 - c^3 = \frac{1}{2}(a + b + c)\left[(a - b)^2 + (b - c)^2 + (c - a)^2\right] \] **Step 1: Expand the right-hand side (RHS).** Using the identity \( (a - b)^2 = a^2 - 2ab + b^2 \): \[ (a - b)^2 + (b - c)^2 + (c - a)^2 = (a^2 - 2ab + b^2) + (b^2 - 2bc + c^2) + (c^2 - 2ca + a^2) \] Combining like terms: \[ = 2a^2 + 2b^2 + 2c^2 - 2(ab + bc + ca) \] **Step 2: Substitute back into RHS.** \[ RHS = \frac{1}{2}(a + b + c)(2a^2 + 2b^2 + 2c^2 - 2(ab + bc + ca)) \] \[ = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca) \] **Step 3: Expand the expression.** This will yield: \[ = a^3 + b^3 + c^3 - 3abc \] **Step 4: Compare LHS and RHS.** LHS is \( 3abc - a^3 - b^3 - c^3 \) and RHS simplifies to \( a^3 + b^3 + c^3 - 3abc \), which means: \[ 3abc - a^3 - b^3 - c^3 \neq a^3 + b^3 + c^3 - 3abc \] Thus, Statement II is **False**. ### Conclusion: - Statement I is **True**. - Statement II is **False**. ### Final Answer: The correct option is that Statement I is true and Statement II is false.
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS AND POLYNOMIALS

    CENGAGE|Exercise TEST YOURSELF (LEVEL 3) (MULTIPLE CHOICE QUESTIONS) |40 Videos
  • CIRCLES

    CENGAGE|Exercise OLYMPIAD AND NTSE LEVEL EXERCISES|6 Videos

Similar Questions

Explore conceptually related problems

Expand : (i) (a+b-c)^(2) " " (ii) (a-2b-5c)^(2) " " (iii) (3a-2b-5c)^(2) " " (iv) (2x+(1)/(x)+1)^(2) .

If b+c = 2x, c+a =2y and a +b =2z then value of a^(3) +b^(3) +c^(3) is

If A = 4x^(3) - 5x + 7, B = 2x^(3) -x^(2) + 3 and C = 5x^(3) - 8x^(2) + 10 , then A - 2B - C is

Show : ( x^(a^2)/ x^( b^2 ) )^ (1/( a+b)) times ( x^(b^2)/ x^( c^2 )) ^ ( 1/( b+c )) times ( x^(c^2)/ x^( a^2 ) )^ (1/( c+a)) = 1

If asin x=b cos x=(2c tan x)/(1-tan^(2)x) then ((a^(2)-b^(2))^(2))/(a^(2)+b^(2))= (A) c^(2) (B) 2c^(2) (C) 3c^(2) (D) 4c^(2)

Statement-1: If a =y^(2), b=z^(2) " and " c= x^(2), " then log"_(a) x^(3) xx "log"_(b) y^(3) xx "log"_(c)z^(3) = (27)/(8) Statement-2: "log"_(b) a = (1)/("log"_(a)b)