Home
Class 9
MATHS
If x = 2 (t +(1)/(t)) and y = 3 (t - (1)...

If `x = 2 (t +(1)/(t)) and y = 3 (t - (1)/( t )),` then ` (x ^(2))/( 4 ) - (y ^(2))/( 9)` is

A

3

B

`-4`

C

`4`

D

`-3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \( \frac{x^2}{4} - \frac{y^2}{9} \) given that \( x = 2 \left( t + \frac{1}{t} \right) \) and \( y = 3 \left( t - \frac{1}{t} \right) \). ### Step-by-step Solution: 1. **Substitute the values of \(x\) and \(y\)**: \[ x = 2 \left( t + \frac{1}{t} \right) \quad \text{and} \quad y = 3 \left( t - \frac{1}{t} \right) \] 2. **Calculate \(x^2\)**: \[ x^2 = \left( 2 \left( t + \frac{1}{t} \right) \right)^2 = 4 \left( t + \frac{1}{t} \right)^2 \] 3. **Expand \( (t + \frac{1}{t})^2 \)**: \[ (t + \frac{1}{t})^2 = t^2 + 2 + \frac{1}{t^2} \] Therefore, \[ x^2 = 4 \left( t^2 + 2 + \frac{1}{t^2} \right) = 4t^2 + 8 + \frac{4}{t^2} \] 4. **Calculate \(y^2\)**: \[ y^2 = \left( 3 \left( t - \frac{1}{t} \right) \right)^2 = 9 \left( t - \frac{1}{t} \right)^2 \] 5. **Expand \( (t - \frac{1}{t})^2 \)**: \[ (t - \frac{1}{t})^2 = t^2 - 2 + \frac{1}{t^2} \] Therefore, \[ y^2 = 9 \left( t^2 - 2 + \frac{1}{t^2} \right) = 9t^2 - 18 + \frac{9}{t^2} \] 6. **Substitute \(x^2\) and \(y^2\) into the expression**: \[ \frac{x^2}{4} - \frac{y^2}{9} = \frac{4t^2 + 8 + \frac{4}{t^2}}{4} - \frac{9t^2 - 18 + \frac{9}{t^2}}{9} \] 7. **Simplify \(\frac{x^2}{4}\)**: \[ \frac{x^2}{4} = t^2 + 2 + \frac{1}{t^2} \] 8. **Simplify \(\frac{y^2}{9}\)**: \[ \frac{y^2}{9} = t^2 - 2 + \frac{1}{t^2} \] 9. **Combine the two simplified expressions**: \[ \frac{x^2}{4} - \frac{y^2}{9} = \left( t^2 + 2 + \frac{1}{t^2} \right) - \left( t^2 - 2 + \frac{1}{t^2} \right) \] 10. **Simplify the expression**: \[ = t^2 + 2 + \frac{1}{t^2} - t^2 + 2 - \frac{1}{t^2} \] \[ = 4 \] ### Final Answer: The value of \( \frac{x^2}{4} - \frac{y^2}{9} \) is \( 4 \).
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS AND POLYNOMIALS

    CENGAGE|Exercise TEST YOURSELF (LEVEL 3) (MULTIPLE CHOICE QUESTIONS) |40 Videos
  • CIRCLES

    CENGAGE|Exercise OLYMPIAD AND NTSE LEVEL EXERCISES|6 Videos

Similar Questions

Explore conceptually related problems

If x=2(t+(1)/(t)),y=3(t-(1)/(t)) then (x^(2))/(4)-(y^(2))/(9) is equal to

If x = (1 + 2y)/(2 + y) and y = ( 1 + 2t)/( 2 + t), then x equals

Let x=2(t+(1)/(t)) and y=2(t-(1)/(t)),t!=0. Then,the value of (dy)/(dx) at t=2 is

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)) , then (dy)/(dx) is equal to

If sin x=(2t)/(1+t^(2)) and cot y=(1-t^(2))/(2t) then the value of (d^(2)x)/(dy^(2))=