Home
Class 10
MATHS
Factorize 4 (a-b)^(2) - 9 ( a+b)^(2)....

Factorize `4 (a-b)^(2) - 9 ( a+b)^(2)`.

A

`(5a+ b) (a+ 5b)`

B

`-(5a+ b) (a+ 5b)`

C

`-(5a+ b) (a+ 5b)`

D

`-(5a - b) (a -5b)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorize the expression \( 4(a-b)^2 - 9(a+b)^2 \), we can follow these steps: ### Step 1: Recognize the structure The expression \( 4(a-b)^2 - 9(a+b)^2 \) resembles the difference of squares, which can be expressed as \( A^2 - B^2 = (A - B)(A + B) \). Here, we can set: - \( A = 2(a-b) \) - \( B = 3(a+b) \) ### Step 2: Apply the difference of squares formula Now, we can rewrite the expression using the difference of squares: \[ 4(a-b)^2 - 9(a+b)^2 = (2(a-b))^2 - (3(a+b))^2 = (2(a-b) - 3(a+b))(2(a-b) + 3(a+b)) \] ### Step 3: Simplify each factor Now we simplify each factor: 1. For \( 2(a-b) - 3(a+b) \): \[ 2a - 2b - 3a - 3b = -a - 5b = -(a + 5b) \] 2. For \( 2(a-b) + 3(a+b) \): \[ 2a - 2b + 3a + 3b = 5a + b \] ### Step 4: Combine the factors Now we can combine the simplified factors: \[ 4(a-b)^2 - 9(a+b)^2 = (-(a + 5b))(5a + b) \] This can also be written as: \[ -(a + 5b)(5a + b) \] ### Final Answer Thus, the factorized form of the expression \( 4(a-b)^2 - 9(a+b)^2 \) is: \[ -(a + 5b)(5a + b) \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    CENGAGE|Exercise TEST YOURSELF GAME TIME (Illustrated Puzzles)|3 Videos
  • ALGEBRAIC EXPRESSIONS

    CENGAGE|Exercise TEST YOURSELF (Multiple Choice Questions)|20 Videos
  • AREA OF A TRIANGLE

    CENGAGE|Exercise OLYMPIAD AND NTSE LEVEL EXERCISES |10 Videos

Similar Questions

Explore conceptually related problems

factorize 2x^(2) - 5xy + 3y^(2) , and use your result to factorize 2(3a-b)^(2) - 5(3a-b)(2a-b) + 3(2a-b)^(2) . The factors are

Factorize a-b-a^2+b^2

Factorize a^(2)+b-ab-a

Factorize 9-a^2+2ab-b^2

factorize : (3a+5b)^2-4c^2

Factorize sum_(a,b,c)a^(2)(b^(4)-c^(4))

Factorize: 9a^(2)-16b^(2)( ii) 36a^(2)-(x-y)^(3)80a^(2)-45b^(2)( iv) (3a-b)^(2)-9c^(2)