Home
Class 10
MATHS
The factorized form of x^2 - x + (1)/(4)...

The factorized form of `x^2 - x + (1)/(4)`is

A

`(x - (1)/(2) ) (x - (1)/(2) )`

B

`(2 x -2) (x - (1)/(2))`

C

`(2 x-2 ) (2x-2)`

D

`(x-2) (x-2)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorize the expression \( x^2 - x + \frac{1}{4} \), we can follow these steps: ### Step-by-Step Solution: 1. **Identify the expression**: We start with the expression \( x^2 - x + \frac{1}{4} \). 2. **Rewrite the expression**: Notice that \( \frac{1}{4} \) can be expressed as \( \left(\frac{1}{2}\right)^2 \). Thus, we can rewrite the expression as: \[ x^2 - x + \left(\frac{1}{2}\right)^2 \] 3. **Recognize the form**: The expression now resembles the perfect square trinomial form \( a^2 - 2ab + b^2 \), where \( a = x \) and \( b = \frac{1}{2} \). 4. **Apply the formula**: Recall that the perfect square trinomial can be factored as: \[ (a - b)^2 = a^2 - 2ab + b^2 \] In our case, we have: \[ x^2 - 2 \cdot x \cdot \frac{1}{2} + \left(\frac{1}{2}\right)^2 \] This can be factored into: \[ \left(x - \frac{1}{2}\right)^2 \] 5. **Final factorized form**: Therefore, the factorized form of the expression \( x^2 - x + \frac{1}{4} \) is: \[ \left(x - \frac{1}{2}\right)^2 \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    CENGAGE|Exercise TEST YOURSELF GAME TIME (Illustrated Puzzles)|3 Videos
  • ALGEBRAIC EXPRESSIONS

    CENGAGE|Exercise TEST YOURSELF (Multiple Choice Questions)|20 Videos
  • AREA OF A TRIANGLE

    CENGAGE|Exercise OLYMPIAD AND NTSE LEVEL EXERCISES |10 Videos

Similar Questions

Explore conceptually related problems

The factor of x ^(2) - 4 are