Home
Class 10
MATHS
The factorized form of a^(2) + ac + bc -...

The factorized form of `a^(2) + ac + bc - b^(2)` is

A

`(a - b) (a+ b + c)`

B

`(a+ b) (a - b - c)`

C

`(a+ b) (a - b + c)`

D

`(a - b) (a - b - c)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    CENGAGE|Exercise TEST YOURSELF GAME TIME (Illustrated Puzzles)|3 Videos
  • ALGEBRAIC EXPRESSIONS

    CENGAGE|Exercise TEST YOURSELF (Multiple Choice Questions)|20 Videos
  • AREA OF A TRIANGLE

    CENGAGE|Exercise OLYMPIAD AND NTSE LEVEL EXERCISES |10 Videos

Similar Questions

Explore conceptually related problems

Factorise: 6ab - b ^(2) + 12 ac - 2bc

factorize : 2a^2+bc-2ab-ac

a ^(2) + bc + ab + ac= ?

The most simplified form of (a^(2)-c^(2)+2b(a-c))/(2abc+ab(a+b)+ac(a+c)+bc(b+c)) is

Factorize: 6ab-b^(2)+12ac-2bc

The form factor for a sinusoidal A.C is

| [-bc, b ^ (2) + bc, c ^ (2) + bca ^ (2) + ac, -ac, c ^ (2) + aca ^ (2) + ab, b ^ (2) + ab, -ab (ab + bc + ac), is = 64. then

If (a^(2)-bc)/(a^(2) +bc) + (b^(2)-ac)/(b^(2) + ac) + (c^(2)-ab)/(c^(2)+ab)= 1 then find (a^(2))/(a^(2) + bc) + (b^(2))/(b^(2) + ac) + (c^(2))/(c^(2) +ab)= ?

" If \begin{vmatrix} -a^2 & ab & ac\\ ab & -b^2 & bc\\ ac & bc & -c^2 \end{vmatrix}=1 then the value of a^(2)b^(2)c^(2) is