Home
Class 10
MATHS
The value of the determinant |(0, b^...

The value of the determinant
`|(0, b^(3)-a^(3),c^(3)-a^(3)),(a^(3)-b^(3),0,c^(3)-b^(3)),(a^(3)-c^(3),b^(3)-c^(3),0)|` is equal to

A

` a^(3) + b^(3) + c^(3)`

B

`a^(3) - b^(3) - c^(3)`

C

0

D

` - a^(3) + b^(3) + c^(3)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    CENGAGE|Exercise Puzziles and games |5 Videos
  • DETERMINANTS

    CENGAGE|Exercise Test Yourself (Level 3) (M.C.Q)|6 Videos
  • CIRCLES AND CYCLIC QUADRILATERALS

    CENGAGE|Exercise OLYMPIAD AND NTSE LEVEL EXERCISES|10 Videos
  • EQUATION OF A STRAIGHT LINE - I

    CENGAGE|Exercise WORKED EXAMPLES |11 Videos

Similar Questions

Explore conceptually related problems

If a+b+c=0, then a^(3)+b^(3)+c^(3) is equal to

a^(3)(sin^(3)B-sin^(3)C)+b^(3)(sin^(3)C-sin^(3)A)+c^(3)(sin^(3)A-sin^(3)B)=0

a^(3)(sin^(3)B-sin^(3)C)+b^(3)(sin^(3)C-sin^(3)A)+c^(3)(sin^(3)A-sin^(3)B)=0

What is the value of the expression ? ((a-b)^(3)+(b-c)^(3)+(c-a)^(3))/(3(a-b)(b-c)(c-a))=?

If [[a,a^(2),a^(3)-1b,b^(2),b^(3)-1c,c^(2),c^(3)-1]]=0

Prove that (a+b+c)^(3)-a^(3)-b^(3)-c^(3)=3(a+b)(b+c)(c+a)

a^(3)( sin^(3)B-sin^(3)C) + b^(3) (sin^(3)C-sin^(3)A) + c^(3)( sin^(3)A-sin^(3)B) = 0

Prove that :(a+b+c)^(3)-a^(3)-b^(3)-c^(3)=3(a+b)(b+c)(c+a)