Home
Class 10
MATHS
Prove that sin^(4)theta-cos^(4)theta=sin...

Prove that `sin^(4)theta-cos^(4)theta=sin^(2)theta-cos^(2)theta`.

Text Solution

Verified by Experts

The correct Answer is:
`sin^(2)theta-cos^(2)theta`
Promotional Banner

Topper's Solved these Questions

  • TRANSFORMATIONS

    CENGAGE|Exercise Olympiad and NTSE level exercises |10 Videos

Similar Questions

Explore conceptually related problems

Prove that : sin^(4)theta-cos^(4)theta=2sin^(2)theta-1

sin^(4)theta+cos^(4)theta=1-2sin^(2)theta cos^(2)theta

"(i) "sin^(4)theta-cos^(4)theta=sin^(2)theta-cos^(2)theta

Prove that : sin^(2)theta+cos^(4)theta=cos^(2)theta+sin^(4)theta

Prove that (cos^(4)theta-sin^(4)theta)/(cos^(2)theta-sin^(2)theta)=1

Solve cos^(4)theta-sin^(4)theta=cos^2theta

Prove that : cos^(4)theta - cos^(2)theta = sin^(4)theta - sin^(2) theta

If tan theta=(3)/(4), then (4sin^(2)theta-2cos^(2)theta)/(4sin^(2)theta+3cos^(2)theta)

If tan theta=(3)/(4), then (4sin^(2)theta-2cos^(2)theta)/(4sin^(2)theta+3cos^(2)theta)

Prove that cos^4 theta-sin^4 theta=1-2sin^2 theta