Home
Class 10
MATHS
sin^(2)30^(@)+tan^(2)45^(@)+tan^(2)60^(@...

`sin^(2)30^(@)+tan^(2)45^(@)+tan^(2)60^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sin^2(30^\circ) + \tan^2(45^\circ) + \tan^2(60^\circ) \), we will follow these steps: ### Step 1: Find the values of the trigonometric functions - The value of \( \sin(30^\circ) \) is \( \frac{1}{2} \). - The value of \( \tan(45^\circ) \) is \( 1 \). - The value of \( \tan(60^\circ) \) is \( \sqrt{3} \). ### Step 2: Calculate the squares of these values - \( \sin^2(30^\circ) = \left( \frac{1}{2} \right)^2 = \frac{1}{4} \) - \( \tan^2(45^\circ) = (1)^2 = 1 \) - \( \tan^2(60^\circ) = (\sqrt{3})^2 = 3 \) ### Step 3: Substitute these values into the expression Now, we substitute the calculated values into the expression: \[ \sin^2(30^\circ) + \tan^2(45^\circ) + \tan^2(60^\circ) = \frac{1}{4} + 1 + 3 \] ### Step 4: Simplify the expression To simplify \( \frac{1}{4} + 1 + 3 \), we first convert \( 1 \) and \( 3 \) into fractions with a common denominator of \( 4 \): - \( 1 = \frac{4}{4} \) - \( 3 = \frac{12}{4} \) Now we can add them: \[ \frac{1}{4} + \frac{4}{4} + \frac{12}{4} = \frac{1 + 4 + 12}{4} = \frac{17}{4} \] ### Final Answer Thus, the value of the expression \( \sin^2(30^\circ) + \tan^2(45^\circ) + \tan^2(60^\circ) \) is \( \frac{17}{4} \). ---
Promotional Banner

Topper's Solved these Questions

  • STANDARD AND ALLIED ANGLES

    CENGAGE|Exercise TEST YOURSELF (LEVEL 1)|8 Videos
  • STANDARD AND ALLIED ANGLES

    CENGAGE|Exercise TEST YOURSELF (LEVEL 2)|8 Videos
  • SIMPLE AND SIMULTANEOUS EQUATIONS

    CENGAGE|Exercise TEST YOURSELF Multiple Choice Questions |40 Videos
  • TANGENTS TO CIRCLES

    CENGAGE|Exercise OLYMPIAD AND NTSE LEVEL EXERCISES |10 Videos

Similar Questions

Explore conceptually related problems

3sin^(2)30^(@)+2cos^(2)45^(@)+3tan^(2)60^(@)=

(kcosec^(2)30^(@).sec^(2)45)/(8cos^(2)45^(@).sin^(2)60^(@))=tan^(2)60^(@)-tan^(2)30^(@) , then k = ?

Evaluate : (sin^(2)30^(@)+sin^(2)45^(@)-4cot^(2)60^(@))/(2sin30^(@)cos30^(@)+(1)/(2)tan60^(@))

(5sin^(2)30^(@)+cos^(2)45^(@)-4tan^(2)30^(@))/(2sin30^(@).cos30^(@)+tan45^(@))=?

The value of sin^(2)30^(@).cos^(2)45^(@)+2tan^(2)30^(@)-sec^(2)60^(@) is equal to :

If (x-xtan^(2)30^(@))/(1+tan^(2)30^(@))=sin^(2)30^(@)+4cot^(2)45^(@)-sec^(2)60^(@) , then the value of x is :

1Evaluate : (5sin^(2)30^(@)+cos^(2)45^(0)-tan^(2)30^(@))/(2sin30^(0)xxcos30^(@)+tan45^(@))

Show that : 2tan^(2)60^(@)-6(sin^(2)45^(@)-tan^(2)30^(@))=5