Home
Class 12
MATHS
The number of odd proper divisors of 3^(...

The number of odd proper divisors of `3^(p)*6^(q)*15^(r),AA p,q,r, in N`, is

A

(a) (p+q+1)(q+r+1)(r+1)

B

(b) (p+q+1)(q+r+1)(r+1)-2

C

(c) (p+q)(q+r)r-2

D

(d) (p+q)(q+r)r

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    ARIHANT MATHS|Exercise Exercise For Session 6|27 Videos
  • PERMUTATIONS AND COMBINATIONS

    ARIHANT MATHS|Exercise Exercise For Session 7|5 Videos
  • PERMUTATIONS AND COMBINATIONS

    ARIHANT MATHS|Exercise Exercise For Session 4|18 Videos
  • PARABOLA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|35 Videos
  • PROBABILITY

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|55 Videos

Similar Questions

Explore conceptually related problems

Statement-1: The number of divisors of 10! Is 280. Statement-2: 10!= 2^(p)*3^(q)*5^(r)*7^(s) , where p,q,r,s in N.

Given that the divisors of n=3^(p)*5^(q)*7^(r) are of of the form 4lamda+1,lamdage0 . Then,

lf r, s, t are prime numbers and p, q are the positive integers such that their LCM of p,q is r^2 t^4 s^2, then the numbers of ordered pair of (p, q) is (A) 252 (B) 254 (C) 225 (D) 224

Let p=2520, x=number of divisors of p which are multiple of 6, y=number of divisors of p which are multiple of 9, then

Consider a number N=21 P 5 3 Q 4. The number of ordered pairs (P,Q) so that the number' N' is divisible by 9, is

Consider a number N = 2 1 P 5 3 Q 4. The number of ordered pairs (P,Q) so that the number 'N' is divisible by 44, is

A is a set containing n elements. A subset P of A is chosen. The set A is reconstructed by replacing the elements of P. A subset Q of A is again chosen, the number of ways of choosing so that (P cup Q) is a proper subset of A, is

Suppose ,m divided by n , then quotient q and remainder r or m= nq + r , AA m,n,q, r in 1 and n ne 0 If 13^(99) is divided by 81 , the remainder is

If the roots of the equation 1/(x+p)+1/(x+q)=1/r, (x ne -p, x ne -q, r ne 0) are equal in magnitude but opposite in sign, then p + q is equal to :

Let n(P) = 4 and n(Q) = 5. The number of all possible injections from P to Q is :

ARIHANT MATHS-PERMUTATIONS AND COMBINATIONS -Exercise For Session 5
  1. There are 4 oranges, 5 apples and 6 mangoes in a fruit basket and all ...

    Text Solution

    |

  2. In a city no two persons have identical set of teeth and there is no p...

    Text Solution

    |

  3. If a1,a2,a3,.....,a(n+1) be (n+1) different prime numbers, then the n...

    Text Solution

    |

  4. Find the total number of proper factors of the number 35700.

    Text Solution

    |

  5. The sum of the divisors of 2^(5)xx3^(4)xx5^(2), is

    Text Solution

    |

  6. The number of odd proper divisors of 3^(p)*6^(q)*15^(r),AA p,q,r, in N...

    Text Solution

    |

  7. The number of odd proper divisors of 3^(p)*6^(q)*15^(r),AA p,q,r, in N...

    Text Solution

    |

  8. The number of proper divisors of 1800, which are also divisible by 10,...

    Text Solution

    |

  9. Total number of divisors of 480 that are of the form 4n+2, n ge 0, is...

    Text Solution

    |

  10. Total number of divisors of N=2^(5)*3^(4)*5^(10)*7^(6) that are of the...

    Text Solution

    |

  11. Total number of divisors of n = 3^5. 5^7. 7^9 that are in the form of ...

    Text Solution

    |

  12. In how many ways 12 different books can be distributed equally among 3...

    Text Solution

    |

  13. Number of ways in which 12 different things can be distributed in 3 gr...

    Text Solution

    |

  14. Number of ways in which 12 different things can be divided among five ...

    Text Solution

    |

  15. Number of ways in which 12 different things can be divided among five ...

    Text Solution

    |

  16. The total number of ways in which 2n persons can be divided into n ...

    Text Solution

    |

  17. n different toys have to be distributed among n children. Find the num...

    Text Solution

    |

  18. In how any ways can 8 different books be distributed among 3 students ...

    Text Solution

    |