Home
Class 12
MATHS
Let (S) denotes the number of ordered pa...

Let (S) denotes the number of ordered pairs (x,y) satisfying `(1)/(x)+(1)/(y)=(1)/(n),x,y,n in N`.
Q. `sum_(r=1)^(10)S(r)` equals

A

47

B

48

C

49

D

50

Text Solution

Verified by Experts

The correct Answer is:
B

`because1^(2)toS(1)=1,2^(2)toS(2)=3,3^(2)toS(3)=3`,
`4^(2) to 2^(4)to S(4)=5,5^(2)toS(5)=3,S(6)=9`
`S(7)=3,S(8)=7,S(9)=5 and S(10)=9` [from above]
`therefore underset(r=1)overset(10(sum)S(r)=S(1)+S(2)+S(3)+S(4)+S(5)+S(6)+S(7)+S(8)+S(9)+S(10)`
`=1+3+3+5+3+9+3+7+5+9=48`
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|10 Videos
  • PERMUTATIONS AND COMBINATIONS

    ARIHANT MATHS|Exercise Exercise (Matching Type Questions)|2 Videos
  • PERMUTATIONS AND COMBINATIONS

    ARIHANT MATHS|Exercise Exercise (More Than One Correct Option Type Questions)|10 Videos
  • PARABOLA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|35 Videos
  • PROBABILITY

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|55 Videos

Similar Questions

Explore conceptually related problems

Let S(n) denotes the number of ordered pairs (x,y) satisfying 1/x+1/y=1/n,AA ,n in N , then find S(10) .

The number of ordered pairs (x, y) , when x, y in [ 0, 10] satisfying (sqrt(sin^(2)x- sinx + 1/2))*2^(sec^(2)y) le 1 is

Number of ordered pair (x,y) which satisfies the relation (x^(4)+1)/(8x^(2))=sin^(2)y*cos^(2) y , where y in [0,2pi]

If f: R rarrR satisfying: f(x-f(y)) = f(f(y) +f(x)-1, for all x, y in R , then -f(10) equals.

if f: 9R to 9R satisfies f(x+y)=f(x)+f(y) , for all x, y , in 9 R and f(1)=10 then sum_(r=1)^(n) f(r)

If sum_(r=1)^n t_r=n/8(n+1)(n+2)(n+3), then find sum_(r=1)^n1/(t_r)dot

If f:R rarr R satisfying f(x-f(y))=f(f(y))+xf(y)+f(x)-1, for all x,y in R , then (-f(10))/7 is ……… .

Let f be a function satisfying f(x+y)=f(x) + f(y) for all x,y in R . If f (1)= k then f(n), n in N is equal to

If f is a function satisfying f(x+y)= f(x) f(y) for all x,y in N such that f(1)=3 and sum_(x=1)^n f(x)=120 , find the value of n.

Lim_(n to 0) sum_(x + 1)^(n) tan^(-1) (1/(2r^2)) equals