Home
Class 12
MATHS
Prove by mathematical induction that sum...

Prove by mathematical induction that `sum_(r=0)^(n)r^(n)C_(r)=n.2^(n-1), forall n in N`.

Text Solution

Verified by Experts

Let `P(n):sum_(r=0)^(n)r^(n)C_(r)=n.2^(n-1)`
Step I For n=1,
LHS of Eq. (i) `=sum_(r=0)^(1)r.^(1)C_(r)=0+1.^(1)C_(1)=1` and RHS of Eq. (i) `=1.2^(1-1)=2^(0)=1`
Therefore , P(1) is true .
Step II Assume that P(k) is true , then P(k) : `sum_(r=0)^(k)r.^(k)C_(r)=k.2^(k-1)`
Step III For `n=k+1`
`P(k+1):sum_(r=0)^(k+1)r.^(k+1)C_(r)=(k+1).2^(k)`
`therefore LHS =sum_(r=0)^(k+1)r.^(k+1)C_(r)=0+sum_(r=1)^(k+1)r.^(k+1)C_(r)`
`=sum_(r=1)^(k+1)r.^(k+1)C_(r)=sum_9r=1)^(k)r.^(k+1)C_(r)+(k+1).^(k+1)C_(k+1)`
`=sum_(r=1)^(k)r(.^(k)C_(r)+.^(k)C_(r-1))+(k+1)`
`=sum_(r=1)^(k)r.^(k)C_(r)+sum_(r=0)^(k)r.^(k)C_(r-1)+(k+1)`
`=sum_(r=0)^(k)r.^(k)C_(r)+sum_(r=0)^(k+1)r.^(k)C_(r-1)`
`=sum_(r=0)^(k)r.^(k)C_(r)+sum _(r=0)^(k)(r+1).^(k)C_r)`
`=sum_(r=0)^(k)r.^(k)C_(r)+sum_(r=0)^(k)r.^(k)C_(r)+sum_(r=0)^(k).^(k)C_(r)`
`=P(k)+P(k)+2^k` [by assumption step]
`=k.2^(k-1)+k.26(k-1)+2^(k)=2.k.2^k-1+2^k`
`=k.2^k+2^k=(k+1).2^k=RHS`
Therefore , `P(k+1)` is true. Hence , by the principle of mathematical induction `P(n)` is true for all `n in N`.
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Mathematical Induction Exercise 1: (Single Option Correct Tpye Questions)|3 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Exercise (Statement I And Ii Type Questions)|3 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|4 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|49 Videos

Similar Questions

Explore conceptually related problems

Find the sum sum_(r=0)^n^(n+r)C_r .

Prove that sum_(r=0)^n 3^r "^nC_r= 4^n .

Prove that: sum_(r=0)^(n) 3^( r) ""^(n)C_(r) = 4^(n) .

If A= ((-1,-4),(1,3)) , then prove by Mathematical Induction that : A^n = ((1-2n,-4n),(n,1+2n)) , where n in N

If A= ((3,-4),(1,-1)) , then prove by Mathematical Induction that : A^n = ((1+2n,-4n),(n,1-2n)) , where n in N

If A= ((11,-25),(4,-9)) , then prove by Mathematical Induction that : A^n = ((1+10n,-25n),(n,1-10n)) , where n in N

By Mathematical Induction, prove that : n! 1 .

Prove that sum_(r=0)^n^n C_rsinr xcos(n-r)x=2^(n-1)sin(n x)dot

Find the sum of sum_(r=1)^n(r^n C_r)/(^n C_(r-1) .

Prove, by Mathematical Induction, that for all n in N, n(n + 1) (n + 2) (n + 3) is a multiple of 24.