Home
Class 12
MATHS
Using the principle of mathematical indu...

Using the principle of mathematical induction to show that `41^n-14^n` is divisible by 27 for all n.

Text Solution

Verified by Experts

Let `P(n):tan^(-1)((x)/(1+1.2.x^2))+tan^(-1)((x)/(1+2.3.x^2))+.....+tan^(-1)((x)/(1+n(n+1)x^2))` .....(i)
`=tan^(-1)(n+1)x-tan^(-1)x`
Step I For `n=1`.
LHS of Eq. (i) `=tan^(-1)((x)/(1+1.2.x^2))`
`=tan^(-1)((2x-x)/(1+2x.x))=tan^(-1)2x-tan^(-1)x`
=RHS of Eq.(i)
Therefore , P(1) is true.
Step II Assume it is true for `n=k`.
`P(k):tan^(-1)((x)/(1+1.2x^2))+tan^(-1)((x)/(1+2.3x^2))+......+tan^(-1)((x)/([1+k(k+1)x^2]))`
`=tan^(-1)(k+1)x-tan^(-1)x`
Step III For `n=k+1`.
`P(k+1):tan^(-1)((x)/(1+1.2.x^2))+tan^(-1)((x)/(1+2.3.x^2))+.....+tan^(-1)((x)/(1+k(k+1)x^2))+......+tan^(-1)((x)/(1+(k=1)(k+2)x^2))`
`=tan^(-1)(k+2)x-tan^(-1)x`
`therefore LHS =tan^(-1)((x)/(1+1.2.x^2))`
`+tan^(-1)((x)/(1+2.3.x^2))+....+tan^(-1)((x)/(1+k(k+1)x^2))+tan^(-1)((x)/(1+(k+1)(k+2)x^2))`
`tan^(-1)(k+1)x-tan^(-1)x+tan^(-1)((x)/(1+(k+1)(k+2)x^2))`
`=tan^(-1)(k+1)x-tan^(-1)x+tan^(-1)(((k+2)x-(k+1)x)/(1+(k+2)x(k+1)x))`
`=tan^(-1)(k+1)x-tan^(-1)x+tan^(-1)(k+2)x-tan^(-1)(k+1)x=tan^(-1)(k+2)x-tan^(-1)x=RHS`
This shows that the result is true for `n=k+1`. Hence , by the principle of mathematical induction , the result is true for all the `n in N`.
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Mathematical Induction Exercise 1: (Single Option Correct Tpye Questions)|3 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Exercise (Statement I And Ii Type Questions)|3 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|4 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|49 Videos

Similar Questions

Explore conceptually related problems

Use the principle of mathematical induction to show that a^(n) - b^n) is divisble by a-b for all natural numbers n.

Use the principle of mathematical induction to show that 5^(2n+1)+3^(n+2).2^(n-1) divisible by 19 for all natural numbers n.

Use the Principle of Mathematical Induction to prove that n(n + 1) (2n + 1) is divisible by 6 for all n in N.

Prove by mathematical induction that 10^(2n-1)+1 is divisible by 11

Prove the following by using the principle of mathematical induction for all n in N :- x^(2n)-y^(2n) is divisible by x + y .

Prove the following by the principle of mathematical induction: \ 11^(n+2)+12^(2n+1) is divisible 133 for all n in Ndot

Prove the following by using the principle of mathematical induction for all n in N :- 10^(2n-1) + 1 is divisible by 11.

Prove the following by the principle of mathematical induction: \ x^(2n-1)+y^(2n-1) is divisible by x+y

Prove the following by using the principle of mathematical induction for all n in N :- 41^n- 14^n is a multiple of 27.