Home
Class 12
MATHS
Show that for all n in N. sqrt(a+sqrt(...

Show that for all `n in N`.
`sqrt(a+sqrt(a+sqrt(a+....+sqrt(a))))lt (1+sqrt((4a+1)))/(2)`
where'a' is fixed positive number and n radical signs are taken on LHS.

Text Solution

Verified by Experts

Let `P(n):sqrt(a+sqrt(a+sqrt(a+.....+sqrt(a))))lt 1+sqrt(((4a+1))/(2)`
Step I For `n=1` , then `sqrt(a)lt 1+sqrt((4a+1))/(2)`
`rArr 2sqrt(a) lt 1+sqrt((4a+1))`
`rArr 4alt 1+4a+1+2sqrt((4a+1))`
`rArr 2sqrt((4a+1))+2 gt 0` which is true .
Therefore , P(1) is ture .
Step II Assume it is true for n`=k` .
`P(k): ubrace(sqrt(a+sqrt(a+sqrt(a+....+sqrt(a)))))_("k radical signs")lt (1+sqrt(4a+1))/(2)`
Step III For `n =k+1`,
`P(k+1):ubrace(sqrt(a+sqrt(a+sqrt(a+....+sqrt(a)))))_("(k+1) radical signs")lt (1+sqrt((4a+1)))/(2)`
From assumption step
`ubracesqrt(a+sqrt(a+sqrt(a+......+sqrt(a))))_("k radical signs")lt (1+sqrt(4a+1))/(2)`
`a+ubracesqrt(a+sqrt(a+sqrt(a+......+sqrt(a))))_("k radical signs")lt (1+sqrt((4a+1)))/(2)`
`rArrubracesqrt(a+sqrt(a+sqrt(+sqrt(a+....+sqrt(a)))))_((k+1)"radical signa")lt sqrt(a+(1+sqrt((4a+1)))/(2))`
`=sqrt((2a+1+sqrt((4a+1)))/(2))=sqrt((4a+2+2sqrt((4a+1)))/(4))`
`=sqrt(((sqrt((4a+1)))^2+1+2sqrt((4a+1)))/(4))`
`=sqrt(((1+sqrt((4a+1)))/(2))^2)=(1+sqrt((4a+1)))/(2)`
`therefore ubracesqrt(a+sqrta+sqrt(a+sqrt(a+....+sqrt(a))))_((k+1)"radical signs")lt (1+sqrt((4a+1)))/(2)`
which is true for `n=k+1`.
Hence , by the principle of mathematical induction , the result is true for all ` n in N `.
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Mathematical Induction Exercise 1: (Single Option Correct Tpye Questions)|3 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Exercise (Statement I And Ii Type Questions)|3 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|4 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|49 Videos

Similar Questions

Explore conceptually related problems

Use the principle of mathematical induction to prove that for all n in N sqrt(2+sqrt(2+sqrt(2+...+...+sqrt2)))=2cos ((pi)/(2^(n+1))) when the LHS contains n radical signs.

Show that (-sqrt(-1))^(4n+3)=i , where n is a positive integer.

Show that cot (142\ 1/2) ^@ = sqrt(2) + sqrt(3) - 2 - sqrt(6)

x=sqrt(1+2sqrt(1+3sqrt(1+4sqrt(1+...

Simplify : sqrt ((-x)/16)+ sqrt ((-x)/25)-sqrt ((-x)/36) , where x is a positive real number.

If y = sqrt(x+ sqrt(x + sqrt(x + ......oo))) , show that (2y - 1) (dy)/(dx) = 1

The value of lim_(xto2a)(sqrt(x-2a)+sqrt(x)-sqrt(2a))/(sqrt(x^2-4a^2)) is

If agt0 and blt0, then sqrt(a)sqrt(b) is equal to (where, i=sqrt(-1))

Let (2+sqrt3)/(2-sqrt3)+(2-sqrt3)/(2+sqrt3)+(sqrt3-1)/(sqrt3+1)=1+msqrt3 , find rational numbers l and m.

Prove that 4 cos 36^@ +cot 7 1^@/2 = sqrt1+sqrt2 +sqrt3+ sqrt4+ sqrt5+ sqrt6 .