Home
Class 12
MATHS
Prove that sum(r=0)^n^n Crsinr xcos(n-r)...

Prove that `sum_(r=0)^n^n C_rsinr xcos(n-r)x=2^(n-1)sin(n x)dot`

Text Solution

Verified by Experts

Let `P(n):{prod_(r=0)^(n)f_(r)(x)}^(')=sum_(i=1)^(n){f_(1)(x)f_(2)(x).....f_(1)(x)....f_(n)(x)}`
Step I For ` n =1` ,
LHS of Eq. (i) `={prod_(r=1)^(1)f_(r)f(x)}^(')={f_(1)(x)}^(')=f_(1)^(')(x)`
RHS of Eq. (i) `=sum_(i=1)^(1){f_1(x)f_(2)(x)...f_(1)^(')(x)... f_(1)(x)}`
which is true for `n=1`.
Step II Assume it is true for `n=k` , then
`P(k):{prod_(r=1)^(k)f_(r)(x)}^(')=sum_(i=1)^(k){f_1(x)f_2(x).....f_1(x)....f_k(x)}`
Step III For `n=k+1`,
LHS`={prod_(r=1)^((k+1))f_r(x)}={prod_(r=1)^(k)f_r(x).f_(k+1)(x)}^(')`
`=prod_(r=1)^(k)f_r(x).f_(k+1)^(')(x)+f_(k+1)(x){prod_(r=1)^(k)f_r(x)}^'`
`= prod_(r=1)^(k)f_r(x).f_(k+1)^(')(x)+f_(k+1)(x).sum_(i=1)^(k){f_1(x).f_2(x).....f_(k+1)^(')....f_(k)(x)}`
`={f_1(x)f_2(x)....f_k(x)}f_(k+1)^(')(x)+f_(k+1)(x) sum_(i=1)^(k){f_1(x)f_2(x)....f_(i) '(x).....f_(k)(x)}`
`= sum_(i=1)^(k+1){f_19x)f_2(x).....f_(i)'(x)....f_(k+1)(x)}=RHS`
This shows that the result is true for `n=k+1`. Hence , by the principle of mathematical induction , the result is true for all `n in N`.
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Mathematical Induction Exercise 1: (Single Option Correct Tpye Questions)|3 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Exercise (Statement I And Ii Type Questions)|3 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|4 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|49 Videos

Similar Questions

Explore conceptually related problems

Prove that sum_(r=0)^n 3^r "^nC_r= 4^n .

Prove that: sum_(r=0)^(n) 3^( r) ""^(n)C_(r) = 4^(n) .

Prove that sum_(k=1)^(n-1) ""^(n)C_(k)[cos k x. cos (n+k)x+sin(n-k)x.sin(2n-k)x]=(2^(n)-2)cos nx .

Find the sum sum_(r=0)^n^(n+r)C_r .

Prove by mathematical induction that sum_(r=0)^(n)r^(n)C_(r)=n.2^(n-1), forall n in N .

Find the sum of sum_(r=1)^n(r^n C_r)/(^n C_(r-1) .

Statement-1: sum_(r =0)^(n) (r +1)""^(n)C_(r) = (n +2) 2^(n-1) Statement -2: sum_(r =0)^(n) (r+1) ""^(n)C_(r) x^(r) = (1 + x)^(n) + nx (1 + x)^(n-1)

Prove that identity : sum_(i=1)^(n) (x_i-bar x)^2 = sum_(i=1)^(n) x_i^2-n bar x^2= sum_(i=1)^(n) x_i^2 -(sum_(i=1)^(n) x_i)^2/n .

(1 + x)^(n) = C_(0) + C_(1)x + C_(2) x^(2) + ...+ C_(n) x^(n) , show that sum_(r=0)^(n) C_(r)^(3) is equal to the coefficient of x^(n) y^(n) in the expansion of {(1+ x)(1 + y) (x + y)}^(n) .

Prove that "^nC_r+2 ^(n)C_(r-1)+ ^(n)C_(r-2) = ^(n+2)C_r .