Home
Class 12
MATHS
Prove the following by using the princip...

Prove the following by using the principle of mathematical induction for all `n in N` :- `x^(2n)-y^(2n)` is divisible by`x + y`.

Text Solution

Verified by Experts

Let `P(n)=x^(2n)-y^(2n)`
Step I For `n=1`.
`P(1)=x^2-y^2=(x-y)(x+y)` which is divisible by `(x+y)`.
Therefore , the result is true for `n=1`.
Step II Assume that the result is true for `n=k`. Then ,
`P(k)=x^(2k)-y^(2k)` is divisible by `x+y`.
`rArr P(k)=(x+y)` r, where r is an integer.
Step III For `n=k+1`.
`=x^2.x^(2k)-y^(2).y^(2k)`
`=x^2x^(2k)-x^2y^(2k)+x^2y^(2k)-y^2y^(2k)`
`=x^(2)(x^(2k)-y^(2k))+y^(2k)(x^2-y^2)`
`=x^2(x+y)r+y^2k(x-y)(x+y)` [by assumption step]
`(x+y){x^2r+y^(2k)(x-y)}`
which is divisible by `(x+y) as x^2r+y^2k(x-y)` is an integer.
This shows that the result is true for `n=k+1`. Hence , by the principle of mathematical induction , the result is true for all `n in N`.
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Exercise (Statement I And Ii Type Questions)|3 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|4 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|49 Videos

Similar Questions

Explore conceptually related problems

Prove the following by using the principle of mathematical induction for all n in N :- 3^(2n+2)-8n -9 is divisible by 8.

Prove the following by using the principle of mathematical induction for all n in N :- 10^(2n-1) + 1 is divisible by 11.

Prove the following by using the principle of mathematical induction for all n in N :- (2n+7) < (n + 3)^2.

Prove the following by using the principle of mathematical induction for all n in N :- 41^n- 14^n is a multiple of 27.

Prove the following by using the principle of mathematical induction for all n in N :- n(n +1) (n + 5) is a multiple of 3.

Prove the following by using the principle of mathematical induction for all n in N :- 1 +2 + 3 +...+n < 1/8(2n+1)^2 .

Prove the following by using the principle of mathematical induction for all n in N :- 1/2+1/4+1/8+...+1/2^n=1-1/2^n .

By the Principle of Mathematical Induction, prove the following for all n in N : 3^(2n)-1 is divisible by 8 .

Prove the following by using the principle of mathematical induction for all n in N :- 1 +3 + 3^2 +....+3^(n-1)=((3^n-1))/2 .

Prove the following by using the principle of mathematical induction for all n in N :- 1^2+3^2+5^2 + ...+(2n-1)^2=(n(2n-1)(2n+1))/3 .

ARIHANT MATHS-MATHEMATICAL INDUCTION -Exercise (Subjective Type Questions)
  1. Prove the following by the principle of mathematical induction:\ 11...

    Text Solution

    |

  2. Show that n^7-n is divisible by 42 .

    Text Solution

    |

  3. Prove that 3^(2n)+24n-1 is divisible by 32 .

    Text Solution

    |

  4. Prove using mathematical induction:- n(n+1)(n+5) is divisible by 6 for...

    Text Solution

    |

  5. Prove that 3^(2n)+24n-1 is divisible by 32 .

    Text Solution

    |

  6. Prove the following by using the principle of mathematical induction f...

    Text Solution

    |

  7. Prove by induction that if n is a positive integer not divisible by 3,...

    Text Solution

    |

  8. Prove that the product of three consecutive positive integers is divis...

    Text Solution

    |

  9. Find the sum of A.P first term 3 and common difference 2 and n=5

    Text Solution

    |

  10. When the square of any odd number, greater than 1, is divided by 8, ...

    Text Solution

    |

  11. Prove the following by using induction for all n in N. 1+2+3+.....+n=...

    Text Solution

    |

  12. Prove the following by the principle of mathematical induction: 1^2...

    Text Solution

    |

  13. Prove the following by the principle of mathematical induction: \ 1...

    Text Solution

    |

  14. If first term is 3 and common ratio is 3 then find the 6th term of G.P

    Text Solution

    |

  15. The third term of a GP is 3. What is the product of the first five ter...

    Text Solution

    |

  16. If First term of G.P is 1 and common ratio '1/2' then find the infinit...

    Text Solution

    |

  17. Let a(0)=2,a1=5 and for n ge 2, an=5a(n-1)-6a(n-2). Then prove by indu...

    Text Solution

    |

  18. If a(1)=1,a(n+1)=(1)/(n+1)a(n),a ge1, then prove by induction that a(n...

    Text Solution

    |

  19. if a,b,c,d,e and f are six real numbers such that a+b+c=d+e+f a^2+b^2...

    Text Solution

    |

  20. The sum of the first ten terms of an AP is four times the sum of the f...

    Text Solution

    |