Home
Class 12
MATHS
If f(x)=(1)/((1-x)),g(x)=f{f(x)}andh(x)=...

If `f(x)=(1)/((1-x)),g(x)=f{f(x)}andh(x)=f[f{f(x)}]`. Then the value of f(x).g(x).h(x) is

A

6

B

-1

C

1

D

2

Text Solution

Verified by Experts

The correct Answer is:
B

`becauseg(x)=f{f(x)}=f((1)/(1-x))=(1)/(1-(1)/(1-x))=(x-1)/(x)`
and `h(x)=f[f{f(x)}]=f(g(x))`
`=(1)/(1-g(x))=(1)/(1-(x-1)/(x))=x`
`therefore f(x).g(x).h(x)=(1)/((1-x)).((x-1))/(x).x=-1`
Promotional Banner

Topper's Solved these Questions

  • SETS, RELATIONS AND FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 1|11 Videos
  • SETS, RELATIONS AND FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 2|10 Videos
  • SEQUENCES AND SERIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • THE STRAIGHT LINES

    ARIHANT MATHS|Exercise The Straight Lines Exercise 8 : (Questions Asked in Previous 13 years Exams)|1 Videos

Similar Questions

Explore conceptually related problems

If f(x) = (1)/(1-x) , show that f(f(x)) = x

If 2f(x)+f(-x)=1/xsin(x-1/x) then the value of int_(1/e)^e f(x)d x is

Let the derivative of f(x) be defined as D^(**)f(x)=lim_(hrarr0)(f^(2)(x+h)-f^(2)(x))/(h), where f^(2)(x)={f(x)}^(2) . If u=f(x),v=g(x) , then the value of D^(**)(u.v) is

If f(x)=e^(1-x) then f(x) is

Let the derivative of f(x) be defined as D^(**)f(x)=lim_(hto0)(f^(2)x+h-f^(2)(x))/(h), where f^(2)(x)={f(x)}^(2) . If u=f(x),v=g(x) , then the value of D^(**)((u)/(v)) is.

If the functions f(x)=x^(3)+e^(x//2) " and " g(x)=f^(-1)(x) , the value of g'(1) is ………… .

Let the function f satisfies f(x).f ′ (−x)=f(−x).f ′ (x) for all x and f(0)=3 The value of f(x).f(-x) for all x is

If f (x) = |x|+|x-1|, find the value of : f(1).

If f(x)=(x-1)/(x+1) , then show that f(1/x)=-f(x)

Let f(x)=x^(2)-2xandg(x)=f(f(x)-1)+f(5-f(x)), then