Home
Class 12
MATHS
Let alpha, beta, gamma be distinct real ...

Let `alpha, beta, gamma` be distinct real numbers. The points with position vectors `alpha hati + beta hatj +gamma hat k , beta hati + gamma hatj +alpha hat k , gamma hati +alpha hatj + beta hatk`

A

are collinear

B

form an equilateral triangle

C

form a scalene triangle

D

form a right angled triangle

Text Solution

Verified by Experts

Let given point be A, B and C with positive vectors `alphahati+betahatj+gammahatk,betahati+gammahatj+alphahatk and gamma hati+alphahatj+betahatk`
As `alpha,beta and gamma` are distinct real numbers, therefore ABC form a triangle.
Clearly, `AB=OB-OA=(betahati+gammahatj+alphahatk)-(alphahati+betahatj+gammahatk)`
`=(beta-alpha)hati+(gamma-beta)hatj+(alpha-gamma)hatk`

Now, `|AB|=sqrt((beta-alpha)^(2)+(gamma-beta)^(2)+(alpha-gamma)^(2))`
Similarly, `BC=CA=sqrt((beta-alpha)^(2)+(gamma-beta)^(2)+(alpha-gamma)^(2))`
`thereforeDeltaABC` is an equilateral triangle.
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise For Session 1|7 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise For Session 2|17 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

If cos alpha+ cos beta + cos gamma = sin alpha+ sin beta +sin gamma= 0 , then :

What is the realtion between alpha, beta and gamma ?

If alpha,beta,gamma be the angles which a line makes with the coordinates axes, then

If cos^-1 alpha + cos^-1 beta + cos^-1 gamma = 3 pi , then alpha(beta + gamma) + beta (gamma + alpha) + gamma (alpha + beta) equals

In the given figure prove that g = alpha + beta + gamma .

What is alpha decay, beta decay and gamma decay?

In the given figure prove that g = alpha + beta + gamma .

If 2 sin alphacos beta sin gamma=sinbeta sin(alpha+gamma),then tan alpha,tan beta and tan gamma are in

If alpha,beta,gamma are the cube roots of p, then for any x,y,z (x alpha + y beta + z gamma)/(x beta + y gamma + z alpha =