Home
Class 12
MATHS
If vec a , vec b are any two vectors, t...

If ` vec a , vec b` are any two vectors, then give the geometrical interpretation of relation `| vec a+ vec b|=| vec a- vec b|`

Text Solution

Verified by Experts

Let OA=a and AB=b. completing the parallelogram OABC.

Then, OC=b and CB=a
from `DeltaOAB`, we have
`OA+AB=Obimpliesa+b=OB` . . . (i)
From `DeltaOCA,` we have
`OC+CA=OA`
`impliesb+CA=aimpliesCA=a-b` . . . (ii)
Clearly, `|a+b|=|a-b|implies |OB|=|CA|`
Diagonals of parallelogram OABC are qual.
OABC is a rectangle.
`implies OA bot OC implies a bot b`.
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise For Session 1|7 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise For Session 2|17 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

If vec a is any vector, then vec a*vec a

If ABCD is a parallelogram and vec AB = vec a , vec BC= vec b then give geometrical significance of |quad vec a+ vec b|=|quad vec a- vec b| .

If vec a and vec b are any two vectors, then prove that |quad vec a+ vec b|^2 + |quad vec a- vec b|^2= 2|quad vec a|^2 + 2|quad vec b|^2 .

If vec a and vec b are any two vectors, then (vec a xx vec b)^2 +(vec a*vecb)^2 =.......

If vec a , vec b , vec c are mutually perpendicular unit vectors , then find the value of |quad 2 vec a+ vec b+ vec c| .

If vec a and vec b are any two vectors, then (vec a+ vec b)^2 +(vec a- vec b)^2 =.............

If vec a and vec b are any two vectors, show that |vec a xxvec b|^2= [[vec a*vec a,vec a*vec b],[vec a*vec b,vec b* vec b]] .

If vec a,vec b,vec c are any three vectors, prove that vec a xx (vec b xx vec c) +vec b xx(vec c xx vec a)+ vec c xx(vec a xx vec b) = vec 0

If vec aa n d vec b are two vectors such that | vec axx vec b|=2, then find the value of [ vec a vec b vec axx vec b]dot

If vec a , vec b ,a n d vec c are three non-coplanar vectors, then find the value of ( vec adot( vec bxx vec c))/( vec b dot( vec cxx vec a))+( vec b dot( vec cxx vec a))/( vec c dot( vec axx vec b))+( vec c dot( vec bxx vec a))/( vec a dot( vec bxx vec c))dot