Home
Class 12
MATHS
If veca=hati+hatj+hatk, vecb=4hati+3hatj...

If `veca=hati+hatj+hatk, vecb=4hati+3hatj+4hatk` and `vecc=hati+alphahatj+betahatk`
are linearly dependent vectors and `|vecc|=sqrt(3)` then:

A

(a) `alpha=1,beta=-1`

B

(b) `alpha=1,beta=+-1`

C

(c) `alpha=+-1,beta=+-1`

D

(d) `alpha=+-1,beta=1`

Text Solution

Verified by Experts

The correct Answer is:
D

The given vectors are linearly dependent, hence there exist scalars x,y and z not all zero, such that
`xa+yb+zc=0`
i.e., `x(hati+hatj+hatk)+y(4hati+3hatj+4hatk)+z(hati+alphahatj+betahatk)=0`
i.e., `(x+4y+z)hati+(x+3y+alphaz)hatj+(x+4y+betaz)hatk=0`
`impliesx+4y+z=0, x+3y+alphaz=0,x+4y+betaz=0`
For non-trivial solution `|(1,4,1),(1,3,alpha),(1,4,beta)|=0implies beta=1`
`|c|^(2)=3implies1+alpha^(2)+beta^(2)=3`
`impliesalpha^(2)=2-beta^(2)=2-1=1`
`thereforealpha=+-1`
Trick `|c|=sqrt(1+alpha^(2)+beta^(2))=sqrt(3)`
`implies alpha^(2)+beta^(2)=2`
`because` a,b and c are linearly dependent, hence `|(1,1,1),(4,3,4),(4,alpha,beta)|=0`
`impliesbeta=1`
`thereforealpha^(2)=1impliesalpha=+-1`.
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise For Session 1|7 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise For Session 2|17 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

If veca=2hati-hatj+hatk,vecb=3hati+2hatj-3hatk and vecc=hati+2hatj+hatk then 2veca+vecb-vecc=

If veca=2hati+hatj+4hatk and vecb=3hati-2hatj+hatk then veca.vecb=

If veca=hati+2hatj-hatk, vecb=2hati+hatj+hatk and vecc=5hati-4hatj+3hatk then find the value of (veca+vecb).vecc .

If veca=2hati-2hatj+hatk,vecb=hati+2hatj-2hatk and vecc=2hati-hatj+4hatk , then find the projection of (vecb+vecc) on veca .

If veca=3hati-hatj+2hatk and vecb=2hati+3hatj+3hatk then veca.vecb is equal to :

If veca=2hati+hatj+7hatk and vecb=5hati-3hatj+10hatk , then veca*vecb is :

Show that the vectors veca=hati-2hatj+3hatk,vecb=-2hati+3hatj-4hatk and vecc=hati-3hatj+5hatk are coplanar.

If vectors veca =hati +2hatj -hatk, vecb = 2hati -hatj +hatk and vecc = lamdahati +hatj +2hatk are coplanar, then find the value of (lamda -4) .