Home
Class 12
MATHS
The position vectors of the points A, B,...

The position vectors of the points A, B, C are `2 hati + hatj - hatk , 3 hati - 2 hatj + hatk and hati + 4hatj - 3 hatk ` respectively . These points

A

form an isosceles triangle

B

form a right angled triangle

C

are collinear

D

form a scalene triangle

Text Solution

Verified by Experts

The correct Answer is:
C

`AB=(3-2)hati+(-2-1)hatj+(1+1)hatk`
`=hati-3hatj+2hatk`
`BC=(1-3)hati+(4+2)hatj+(-3-1)hatk`
`=-2hati+6hatj-4hatk`
`CA=(2-1)hati+(1-4)hatj+(-1+3)hatk`
`=hati-3hatj-2hatk`
`|AB|=sqrt(1+9+4)=sqrt(24)`
`|BC|=sqrt(4+36+16)=sqrt(56)=2sqrt(14)`
`|CA|=sqrt(1+9+4)=sqrt(24)`
So, `|AB|+|AC|=|BC|` and angle between AB and BC is `180^(@)` so, points A,B and C cannot form an isosceles triangle.
Hence, A,B and C are collinear.
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise For Session 1|7 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise For Session 2|17 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

The position vectors of the points A,B and C are hati+2hatj-hatk,hati+hatj+hatk and 2hati+3hatj+2hatk , respectively. If A is chosen as the origin, then the position vectors of B and C are

The position vectors of A,B,C are 2hati+hatj-hatk,3hati-2hatj+hatk and hati+4hatj-3hatk respectively. Show that A, B and C are collinear.

The position vectors of the vertices of /_\ABC are : 3hati-4hatj-4hatk,2hati-hatj+hatk and hati-3hatj-5hatk respectively. Find vec(AB),vec(BC) and vec(CA) .

Area of a rectangle having vertices A, B, C and D with position vectors : -hati + (1/2)hatj + 4hatk, hati + (1/2)hatj + 4hatk, hati - (1/2)hatj + 4hatk and -hati - (1/2)hatj + 4hatk , respectively is:

If the position vectors of the points A and B are hati+3hatj-hatk and 3hati-hatj-3hatk , then what will be the position vector of the mid-point of AB

If the position vectors of P and Q are (hati+3hatj-7hatk) and (5hati-2hatj+4hatk) , then |PQ| is

If the position vectors of A and B respectively hati+3hatj-7hatk and 5 hati-2hatj+4hatk , then find AB

The position vectors of A and B are 2hati-9hatj-4hatk and 6hati-3hatj+8hatk respectively, then the magnitude of AB is