Home
Class 12
MATHS
In a regular hexagon A B C D E F ,\ A ve...

In a regular hexagon `A B C D E F ,\ A vec B=a ,\ B vec C= vec b\ a n d\ vec C D=c\ T h e n\ vec A E=`

Text Solution

Verified by Experts

The correct Answer is:
A

As in figure, `AB=a,BC=b`,
So, `AD=2b and ED=a`

Now, `AE+ED=AD`
`impliesAE=AD-ED=2b-a`
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise For Session 1|7 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise For Session 2|17 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

Prove that [vec a -vec b, vec b - vec c, vec c- vec a] =0

If | vec a|=2,\ | vec b|=5\ a n d\ | vec axx vec b|=8 , find vec adot vec bdot

If ABCDEF is a regular hexagon with vec(AB) = vec(a) ,vec(BC ) = vec(b) then vec(CE) equals :

If in triangle A B C , vec A B= vec u/(| vec u|)- vec v/(| vec v|)a n d vec A C=(2 vec u)/(| vec u|),w h e r e| vec u|!=| vec v|, then a. 1+cos2A+cos2B+cos2C=0 b. sinA=cos C c. projection of A C on B C is equal to B C d. projection of A B on B C is equal to A B

For any three vectors a ,\ b ,\ c prove that [ vec a+ vec b\ , vec b+ vec c\ , vec c+ vec a]=2\ [ vec a\ vec b\ vec c]dot

If vec a , vec b , vec c are vectors such that vec adot vec b= vec adot vec c , vec axx vec b= vec axx vec c , vec a!= vec0, then show that vec b= vec c

If vec a , vec b and vec c are non-coplanar (independent) vectors, prove that the vectors vec a- 2 vec b+ 3 vec c , -2 vec a + 3 vec b- 4 vec c and vec a -vec b+ 2 vec c are also linearly independent.

If vec a , vec b , vec c are three non-coplanar vectors and vec d* vec a = vec d* vec b= vec d* vec c= 0 then show that vec d is zero vector.

Let vec a , vec b , vec c are three non-zero vectors such that vec axx vec b= vec ca n d vec bxx vec c= vec a ; prove that vec a , vec b , vec c are mutually at righ angles such that | vec b|=1a n d| vec c|=| vec a|dot

Show that vectors vec a ,\ vec b ,\ vec c are coplanar if vec a+ vec b ,\ vec b+ vec c ,\ vec c+ vec a are coplanar.