Home
Class 12
MATHS
In a quadrilateral P Q R S , vec P Q= ve...

In a quadrilateral `P Q R S , vec P Q= vec a , vec Q R = vec b , vec S P= vec a- vec b ,M` is the midpoint of ` vec Q Ra n dX` is a point on `S M` such that `S X=4/5S Mdot` Prove that `P ,Xa n dR` are collinear.

A

`PX=(1)/(5)PR`

B

`PX=(3)/(5)PR`

C

`PX=(2)/(5)PR`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

If we take point P as the origin, the position vectors of Q and S are a and b-a respectively.
In `DeltaPQR`, we have

`PR=PQ+QR impliesPR=a+b`
`therefore`Position vector of R=a+b
`impliesPV` or `M=(a+(a+b))/(2)=(a+(1)/(2)b)`
Now, `SX=(4)/(5)SM`
`impliesXM=SM-SX=SM-(4)/(5)SM=(1)/(5)SM`
`thereforeSX:XM=4:1`
`impliesPV` of `X=(4(a+(1)/(2)b)+1(b-a))/(4+1)`
`=(3a+2b)/(5)impliesPX=(3)/(5)(a+b)`
`impliesPX=(3)/(5)PR`
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise For Session 1|7 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise For Session 2|17 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

If vec r* vec a =0 = vec r* vec b ,where vec a and vec b are non-coplanar vectors then

If vec axx vec b= vec axx vec c , vec a!= vec0a n d vec b!= vec c , show that vec b= vec c+t vec a for some scalar tdot

If | vec a|=2,\ | vec b|=5\ a n d\ | vec axx vec b|=8 , find vec adot vec bdot

In a regular hexagon A B C D E F ,\ A vec B=a ,\ B vec C= vec b\ a n d\ vec C D=c\ T h e n\ vec A E=

Solve the vector equation vec r xx vec a + k vec r = vec b , where vec a, vec b are two non-collinear vectors and k is any scalar.

If vec aa n d vec b are two vectors such that | vec axx vec b|=2, then find the value of [ vec a vec b vec axx vec b]dot

If vec r. hat i= vec r.hat j= vec r.hat ka n d| vec r|=3, then find the vector vec rdot

Statement 1: if three points P ,Qa n dR have position vectors vec a , vec b ,a n d vec c , respectively, and 2 vec a+3 vec b-5 vec c=0, then the points P ,Q ,a n dR must be collinear. Statement 2: If for three points A ,B ,a n dC , vec A B=lambda vec A C , then points A ,B ,a n dC must be collinear.