Home
Class 12
MATHS
Orthocenter of an equilateral triangle A...

Orthocenter of an equilateral triangle ABC is the origin O. If `vec(OA)=veca, vec(OB)=vecb, vec(OC)=vecc`, then `vec(AB)+2vec(BC)+3vec(CA)=`

A

3c

B

3a

C

0

D

3b

Text Solution

Verified by Experts

The correct Answer is:
B

For an equilateral triangle, centroid is the samme as orthocentre
`therefore(OA+OB+OC)/(3)=0`
`thereforeOA+OB+OC=0`
Now, `AB+2BC+3CA`
`=OB-OA+2OC-2OB+3OA-3OC`
`=-OB+2OA-OC`
`=(OB+OA+OC)+3OA=3OA=3a`
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise For Session 1|7 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise For Session 2|17 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

In a triangle OAC, if B is the mid point of side AC and vec(OA)=veca,vec(OB)=vecb , then what is vec(OC) .

Given a parallelogram ABCD . If |vec(AB)|=a, |vec(AD)| = b & |vec(AC)| = c , then vec(DB) . vec(AB) has the value

If ABCDEF is a regular hexagon with vec(AB) = vec(a) ,vec(BC ) = vec(b) then vec(CE) equals :

G is the centroid of a triangle ABC, show that : vec(GA)+vec(GB)+vec(GC)=vec0 .

Statement 1 : In DeltaABC , vec(AB) + vec(BC) + vec(CA) = 0 Statement 2 : If vec(OA) = veca, vec(OB) = vecb , then vec(AB) = veca + vecb

Prove that 3vec(OD)+vec(DA)+vec(DB)+vec(DC) is equal to vec(OA)+vec(OB)+vec(OC) .

ABCDE is a pentagon. Prove that the resultant of forces vec (AB), vec(AE), vec(BC), vec(DC), vec(ED) and vec(AC) is 3vec(AC) .

If Q is the point of intersection of the medians of a triangle ABC, prove that vec(QA)+vec(QB)+vec(QC)=vec0 .

Let A and B be points with position vectors veca and vecb with respect to origin O . If the point C on OA is such that 2vec(AC)=vec(CO), vec(CD) is parallel to vec(OB) and |vec(CD)|=3|vec(OB)| then vec(AD) is (A) vecb-veca/9 (B) 3vecb-veca/3 (C) vecb-veca/3 (D) vecb+veca/3

In pentagon ABCDE, prove that : vec(AB)+vec(BC)+vec(CD)+vec(DE)+vec(EA)=vec0 .