Home
Class 12
MATHS
In a trapezium ABCD the vector B vec C ...

In a trapezium ABCD the vector `B vec C = lambda vec(AD).` If `vec p = A vec C + vec(BD)` is coillinear with `vec(AD)` such that `vec p = mu vec (AD),` then

A

`mu=lamda+1`

B

`lamda=mu+1`

C

`lamda+mu=1`

D

`mu=2+lamda`

Text Solution

Verified by Experts

The correct Answer is:
A

We have, `p=AC+BD=AC+BC+CD`
`=AC+lamdaAD+CD`
`=lamdaAD+(AC+CD)=lamdaAD+AD=(lamda+1)AD`
Therefore, `p=muAD impliesmu=lamda+1`.
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise For Session 1|7 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise For Session 2|17 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

Prove that [vec a+ vec b, vec b +vec c, vec c + vec a]= 2 [vec a vec b vec c]

Prove that [vec a -vec b, vec b - vec c, vec c- vec a] =0

Given a parallelogram ABCD . If |vec(AB)|=a, |vec(AD)| = b & |vec(AC)| = c , then vec(DB) . vec(AB) has the value

Show that the points with position vectors vec a- 2 vec b+ 3 vec c , -2 vec a + 3 vec b+ 2 vec c and -8 vec a + 13 vec b are collinear, whatever vec a , vec b and vec c may be.

If vec axxvec b=vec b xxvec c != vec 0 , then show that vec a+vec c= k vec b where k is a scalar.

Let vec a , vec b , vec c , be three non-zero vectors. If vec a .(vec bxx vec c)=0 and vec b and vec c are not parallel, then prove that vec a=lambda vec b+mu vec c ,w h e r elambda are some scalars dot

If vec a , vec b , vec c are vectors such that vec adot vec b= vec adot vec c , vec axx vec b= vec axx vec c , vec a!= vec0, then show that vec b= vec c

If three unit vectors vec a , vec b , and vec c satisfy vec a+ vec b+ vec c=0, then find the angle between vec a and vec bdot