Home
Class 12
MATHS
In a four-dimensional space where unit v...

In a four-dimensional space where unit vectors along the axes are `hati,hatj,hatk and hatl, and a_(1),a_(2),a_(3),a_(4) ` are four non-zero vectors such that no vector can be expressed as a linear combination of other `(lamda-1) (a_(1)-a_(2))+mu(a_(2)+a_(3))+gamma(a_(3)+a_(4)-2a_(2))+a_(3)+deltaa_(4)=0`, then

A

(a) `lamda=1`

B

(b) `mu=-(2)/(3)`

C

(c) `gamma=(2)/(3)`

D

(d) `delta=(1)/(3)`

Text Solution

Verified by Experts

The correct Answer is:
A, B, D

`(lamda-1)(a_(1)-a_(2))+mu(a_(2)+a_(3))+gamma(a_(3)+a_(4)-2a_(2))+a_(3)+delta a_(4)=0`
`i.e., (lamda-1)a_(1)+(1-lamda+mu-2gamma)a_(2)+(mu+gamma+1)a_(3)+(gamma+delta)a_(4)=0`
Since, `a_(1),a_(2),a_(3) and a_(4)` are linearly independent, we have
`lamda-1=0,1-lamda+mu-2gamma=0`,
`mu+gamma+1=0 and gamma+delta=0`
i.e., `lamda=1,mu=2gamma,mu+gamma+1=0,gamma+delta=0`
Hence, `lamda=1,mu=-(2)/(3),gamma=-(1)/(3),delta=(1)/(3)`.
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise For Session 1|7 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise For Session 2|17 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

If a_(1),a_(2),a_(3),a_(4),a_(5) are in HP, then a_(1)a_(2)+a_(2)a_(3)+a_(3)a_(4)+a_(4)a_(5) is equal to

If a_(0),a_(1),a_(2) ,…, a_(2n) are the coefficients in the expansion of (1 + x + x^(2))^(n) in ascending power of x show that a_(0)^(2) - a_(1)^(2) + a_(2)^(2) -…+ a_(2n)^(2) = a_(n) .

Let (a_(1),b_(1)) and (a_(2),b_(2)) are the pair of real numbers such that 10,a,b,ab constitute an arithmetic progression. Then, the value of ((2a_(1)a_(2)+b_(1)b_(2))/(10)) is

If a_(1),a_(2),a_(3)(a_(1)gt0) are three successive terms of a GP with common ratio r, the value of r for which a_(3)gt4a_(2)-3a_(1) holds is given by

If 4a^(2)+9b^(2)+16c^(2)=2(3ab+6bc+4ca) , where a,b,c are non-zero real numbers, then a,b,c are in GP. Statement 2 If (a_(1)-a_(2))^(2)+(a_(2)-a_(3))^(2)+(a_(3)-a_(1))^(2)=0 , then a_(1)=a_(2)=a_(3),AA a_(1),a_(2),a_(3) in R .

If a_(1),a_(2),a_(3),"….",a_(n) are in AP, where a_(i)gt0 for all I, the value of (1)/(sqrta_(1)+sqrta_(2))+(1)/(sqrta_(2)+sqrta_(3))+"....."+(1)/(sqrta_(n-1)+sqrta_(n)) is

If a_(1),a_(2),a_(3)"....." are in GP with first term a and common ratio r, then (a_(1)a_(2))/(a_(1)^(2)-a_(2)^(2))+(a_(2)a_(3))/(a_(2)^(2)-a_(3)^(2))+(a_(3)a_(4))/(a_(3)^(2)-a_(4)^(2))+"....."+(a_(n-1)a_(n))/(a_(n-1)^(2)-a_(n)^(2)) is equal to

Statement I: If a=2hati+hatk,b=3hatj+4hatk and c=lamda a+mub are coplanar, then c=4a-b . Statement II: A set vector a_(1),a_(2),a_(3), . . ,a_(n) is said to be linearly independent, if every relation of the form l_(1)a_(1)+l_(2)a_(2)+l_(3)a_(3)+ . . .+l_(n)a_(n)=0 implies that l_(1)=l_(2)=l_(3)= . . .=l_(n)=0 (scalar).

If A_(1),A_(2),A_(3),...,A_(n),a_(1),a_(2),a_(3),...a_(n),a,b,c in R show that the roots of the equation (A_(1)^(2))/(x-a_(1))+(A_(2)^(2))/(x-a_(2))+(A_(3)^(2))/(x-a_(3))+…+(A_(n)^(2))/(x-a_(n)) =ab^(2)+c^(2) x+ac are real.