Home
Class 12
MATHS
Statement 1: | vec a|=3,| vec b|=4 a n d...

Statement 1: `| vec a|=3,| vec b|=4 a n d| vec a+ vec b|=5,t h e n| vec a- vec b|=5.` Statement 2: The length of the diagonals of a rectangle is the same.

A

(a) Statement-I and statement II are correct and Statement II is the correct explanation of statement I

B

(b) Both statement I and statement II are correct but statement II is not the correct explanation of statement I

C

(c) Statement I is correct but statement II is incorrect

D

(d) Statement II is correct but statement I is incorrect

Text Solution

Verified by Experts

The correct Answer is:
A

We have, adjacent sides of triangle `|a|=3,|b|=4`
the length of the diagonal is `|a+b|=5`
Since, it satisfies the Pythagoras theorem, `a bot b`
So, the parallelogram is a rectangle.
Hence, the length of the other diagonal is `|a-b|=5`.
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise For Session 1|7 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise For Session 2|17 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

If | vec a|=2,\ | vec b|=5\ a n d\ | vec axx vec b|=8 , find vec adot vec bdot

If | vec a|=5,| vec a- vec b|=8 and | vec a+ vec b|=10 , then find | vec b|dot

Statement 1: If | vec a+ vec b|=| vec a- vec b|,t h e n vec aa n d vec b are perpendicular to each other. Statement 2: If the diagonal of a parallelogram are equal magnitude, then the parallelogram is a rectangle.

If |vec a|=8, |vec b|=3 and |vec axx vec b|=12 , then the value of vec a . vec b is

If |vec(a)|=5,|vec(b)|=4 and vec(a).vec(b)=16 , then |vec(a)xxvec(b)| is

If |quad vec a|=1 , |quad vec b|=1 and |quad vec a+ vec b|=1 , prove that | vec a- vec b|= sqrt 3 .

If (vec a+ vec b)* (vec a- vec b)=0 , show that |quad vec a|=|quad vec b| .

If |vec(a)| = 2, | vec(b)| = 5 and vec(a). Vec(b) = 8 , then |vec(a) - vec(b)| is

Find |vec a| and |vec b| lf (veca + vec b)*(vec a-vec b)=8 and |vec a |=8|vec b| .

If (vec a+ vec b)*(vec a- vec b)=0 and |vec a|=5 , find |vec b| .