Home
Class 12
MATHS
P ,Q have position vectors vec a& vec b...

`P ,Q` have position vectors ` vec a& vec b` relative to the origin `' O^(prime)&X , Ya n d vec P Q` internally and externally respectgively in the ratio `2:1` Vector ` vec X Y=` `3/2( vec b- vec a)` b. `4/3( vec a- vec b)` c. `5/6( vec b- vec a)` d. `4/3( vec b- vec a)`

Text Solution

Verified by Experts

The correct Answer is:
0

Since, X and Y divide PQ internaly and exteranally in the ratio 2:1 then `X=(2b+a)/(3) and y=2b-a`
`thereforeXY=`Position vector y-position vector off x
`=2b-a-(2b+a)/(3)=(4b)/(3)-(4a)/(3)`
On comparing it with `lamda a+mub`, we get
`lamda=-(4)/(3) and mu=(4)/(3)`
`therefore|lamda+mu|=|(-4)/(3)+(4)/93)|=0`
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise For Session 1|7 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise For Session 2|17 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

Find |vec a| and |vec b| lf (veca + vec b)*(vec a-vec b)=8 and |vec a |=8|vec b| .

For any three vectors vec a,vec b and vec c , show that vec a- vec b,vec b- vec c and vec c- vec a are coplanar.

Show that vectors vec a ,\ vec b ,\ vec c are coplanar if vec a+ vec b ,\ vec b+ vec c ,\ vec c+ vec a are coplanar.

Prove that [vec a+ vec b, vec b +vec c, vec c + vec a]= 2 [vec a vec b vec c]

If vec a,vec b,vec c are any three vectors, prove that vec a xx (vec b xx vec c) +vec b xx(vec c xx vec a)+ vec c xx(vec a xx vec b) = vec 0

If the vectors vec a, vec b, vec c are coplanar then (vec a xx vec b)* vec c = (vec b xx vec c)*vec a =...........

For any three vectors a ,\ b ,\ c prove that [ vec a+ vec b\ , vec b+ vec c\ , vec c+ vec a]=2\ [ vec a\ vec b\ vec c]dot

The position vector of the point which divides the join of points 2 vec a -3 vec b and vec a+vec b in the ratio 3: 1 is

For any two vectors vec a and vec b , prove that (vec a* vec b)^ 2 le |quad vec a|^2|quad vec b|^2 .

The vectors vec a and vec b are not perpendicular and vec c and vec d are two vectors satisfying : vec b""X vec c"" =vec b""X vec d""=""a n d"" vec adot vec d=0 . Then the vector vec d is equal to : (1) vec b-(( vec bdot vec c)/( vec adot vec d)) vec c (2) vec c+(( vec adot vec c)/( vec adot vec b)) vec b (3) vec b+(( vec bdot vec c)/( vec adot vec b)) vec c (4) vec c-(( vec adot vec c)/( vec adot vec b)) vec b