Home
Class 12
MATHS
A particle, in equilibrium, is subjected...

A particle, in equilibrium, is subjected to four forces `vecF_1, vecF_2, vecF_3` and `vecF_4`, ` vec F_1 =-10 hat k , vec F _2 =u(4/13 hat i-12/13 hat j+3/13 hatk) , vec F _3 =v(-4/13 hat i-12/13 hat j+3/13 hatk), vec F_4 =w(cos theta hat i+sin theta hat j) ` then find the values of u,v and w

Text Solution

Verified by Experts

Since, the particle is in equilibrium.
`F_(1)+F_(2)+F_(3)+F_(4)=0`
`-10hatk+u((4)/(13)hati-(12)/(13)hatj+(3)/(13)hatk)+v(-(4)/(13)hati-(12)/(13)hatj+(3)/(13)hatk)+w(costhetahati+sinthetahatj)=0`
`implies((4u)/(13)-(4v)/(13)+wcostheta)hati+((-12)/(13)u-(12)/(13)v+wsintheta)hatj+((3)/(13)u+(3)/(13)v-10)hatk=0`
`implies(4u)/(13)-(4v)/(13)+wcostheta=0` . . . (i)
`-(12)/(13)u-(12)/(13)v+wsintheta=0` . . . (ii)
`(3)/(13)u+(3)/(13)v-10=0`
From Eq. (iii), we get `u+v=(130)/(3)`
From eq. (ii), we get
`-(12)/(13)(u+v)+wsintheta=0`
`implies-(12)/(13)((130)/(3))+wsintheta=0`
`implies w=(40)/(sintheta)=40` cosec `theta`
On substituting the value of w in eqs. (i) and (ii), we get
`u-v=-130cot theta`
and `u+v=(130)/(3)`
On solving we get
`u+(65)/(3)-65 cot theta`
`v+(65)/(3)+65cot theta and w=40" cosec "theta`.
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise For Session 1|7 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise For Session 2|17 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

If vec a = 2hat i - hat j+ 3hat k and vec b =4 hat i+ hat j - 3 hat k , find vec a + vec b .

If vec a=3 hat i+4 hat j and vec b=hat i-hat j+hat k , find the value of | vec a*vec b|.

If vec a = 2hat i -3 hat j+ 3hat k and vec b =3 hat i- hat j - 4 hat k , find vec a + vec b .

Find |vec a xx vec b| , if vec a = 2hat i-5 hat j+3 hat k and vec b = hat i-2 hat j +2 hat k .

Find vec a xx vec b , if vec a = - hat i + 3 hat k and vec b = hat i + 3 hat j - 2 hat k .

Find [vec a, vec b, vec c] if vec a= hati -2 hat j+ 3 hat k, vec b=2 hat i-3 hat j + hat k and vec c=3 hat i+ hat j -2 hat k .

Find | vec axx vec b| , if vec a= hat i-7 hat j+7 hat k and vec b=3 hat i-2 hat j+2 hat kdot

Show that the vectors vec a= 10 hat i -12 hat j -4 hat k, vec b=-16 hat i +22 hat j- 2 hat k and vec c = 2hat i -8 hat j +16hat k are coplanar.

If vec a =2 hat i + 2 hat j +3 hat k, vec b=-hat i + 2 hat j +hat k then vec a + vec b is

Find λ such that the vectors vec v_1 =2 hat i - hat j +hat k, vec v_2= hat i +2hat j -3 hat k and vec v_3= 3 hat i +λ hat j +5 hat k are coplanar.