Home
Class 12
MATHS
Statement -1 : If a transversal cuts t...

Statement -1 : If a transversal cuts the sides OL, OM and diagonal ON of a parallelogram at A, B, C respectively, then
`(OL)/(OA) + (OM)/(OB) =(ON)/(OC)`
Statement -2 : Three points with position vectors ` veca , vec b , vec c ` are collinear iff there exist scalars x, y, z not all zero such that `x vec a + y vec b +z vec c = vec 0, " where " x +y + z=0.`

Text Solution

Verified by Experts

We have,
ON=OL+LN=OL+OM` . . (i) ltb rgt Let `OL=xOA,OM=yOB` . . . (ii)
annd ON=zOC
so, `|OL|=x|OA|,|OM|=y|OB| and |ON|=z|OC|`
`thereforex(OL)/(OA),y=(OM)/(OB) and z=(ON)/(OC)`
`therefore` From Eqs. (i) and (ii), we have

`zOC=xOA+yOB`
`implies xOA+yOB-zOC=0`
`therefore`Points A,B and C are collinear, the sum of the coefficients of their PV must be zero.
`implies x+y-z=0`
i.e., `(OL)/(OA)+(OM)/(OB)=(ON)/(OC)`
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise For Session 1|7 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise For Session 2|17 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

If A,B,C,D are the points with position vectors vec a , vec b , 3 vec a+ 2 vec b and vec a- 2 vec b respectively , show that vec AC = 2 vec a + 2 vec b and vec DB= 3 vec b - a .

Show that the points with position vectors vec a- 2 vec b+ 3 vec c , -2 vec a + 3 vec b+ 2 vec c and -8 vec a + 13 vec b are collinear, whatever vec a , vec b and vec c may be.

If the vectors vec a, vec b, vec c are coplanar then (vec a xx vec b)* vec c = (vec b xx vec c)*vec a =...........

If vec a , vec b , vec c are mutually perpendicular unit vectors , then find the value of |quad 2 vec a+ vec b+ vec c| .

If vec a , vec b , vec c are three non-coplanar vectors and vec d* vec a = vec d* vec b= vec d* vec c= 0 then show that vec d is zero vector.

Show that vectors vec a ,\ vec b ,\ vec c are coplanar if vec a+ vec b ,\ vec b+ vec c ,\ vec c+ vec a are coplanar.

Prove that [vec a+ vec b, vec b +vec c, vec c + vec a]= 2 [vec a vec b vec c]

If vec a , vec b , and vec c are three vectors such that vec axx vec b= vec c , vec bxx vec c= vec a , vec cxx vec a= vec b , then prove that | vec a|=| vec b|=| vec c| .

If vec a,vec b,vec c are any three vectors, prove that vec a xx (vec b xx vec c) +vec b xx(vec c xx vec a)+ vec c xx(vec a xx vec b) = vec 0

If vec a , vec b , vec c are vectors such that vec adot vec b= vec adot vec c , vec axx vec b= vec axx vec c , vec a!= vec0, then show that vec b= vec c