Home
Class 12
MATHS
Prove that if cos alpha ne 1, cos beta n...

Prove that if `cos alpha ne 1, cos beta ne1 and cos gamma ne 1`, then the vectors `a=hati cos alpha+hatj+hatk,b=hati+hatj cos beta+hatk` and `c=hati+hatj+hatk cos gamma` can never be coplanar.

Text Solution

Verified by Experts

Suppose that, a,b and c are coplanar.
`implies|(cosalpha,1,1),(1,cosbeta,1),(1,1cos gamma)|=0`
On applying `R_(2) to R_(2)-R_(1) and R_(3) to R_(3)-R_(1)`
`implies|(cos alpha,1,1),(1-cosalpha,cosbeta-1,0),(1-cosalpha,0,cosgamma-1)|=0`
`implies cosalpha(cosbeta-1)(cosgamma-1)-(1-cosalpha)(cosgamma-1)-(1-cosalpha)(cosbeta-1)=0`
On dividing throughout by `(1-cosalpha)(1-cosbeta)(1-cosgamma),` we get
`(cosalpha)/(1-cosalpha)+(1)/(1-cosbeta)+(1)/(1-cosgamma)=0`
`implies(-(1-cosalpha)+1)/(1-cosalpha)+(1)/(1-cosbeta)+(1)/(1-cosgamma)=0`
`implies-1+(1)/((1-cosalpha))+(1)/((1-cosbeta))+(1)/((1-cosgamma))=0`
`(1)/(1-cosalpha)+(1)/(1-cosbeta)+(1)/(1-cosgamma)=1`
`implies"cosec"^(2)(alpha)/(2)+"cosec"^(2)(beta)/(2)+"cosec"^(2)(gamma)/(2)=2,` which is not possible
As, `"cosec"^(2)(alpha)/(2)ge1,"cosec"^(2)(beta)/(2)ge1`
and `"cosec"^(2)(gamma)/(2)ge1`
`because`They cannot be coplanar.
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise For Session 1|7 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise For Session 2|17 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

Show that the vectors veca=hati-2hatj+3hatk,vecb=-2hati+3hatj-4hatk and vecc=hati-3hatj+5hatk are coplanar.

If a=3hati-2hatj+hatk,b=2hati-4hatj-3hatk and c=-hati+2hatj+2hatk , then a+b+c is

The vectors lamdahati+hatj+2hatk, hati+lamdahatj-hatk and 2hati-hatj+lamda hatk are coplanar if

Find lambda , if the vectors veca=hati+3hatj+hatk,vecb=2hati-hatj-hatk and vecc=lambdahatj+3hatk are coplanar.

Show that the vectors hati-hatj-hatk,2hati+3hatj+hatk and 7hati+3hatj-4hatk are coplanar.

The sine of the angle between the vector a=3hati+hatj+hatk and b=2hati-2hatj+hatk is

Show that the following vectors are coplanar : hati-hatj+hatk,6hati-hatk and 4hati+2hatj-3hatk .

If the vectors 2hati-hatj+hatk,hati+2hatj-3hatk and 3hati+ahatj+5hatk are coplanar, the prove that a=-4.