Home
Class 12
MATHS
If a,b, and c are all different and if ...

If a,b, and c are all different and if
`|{:(a,a^(2),1+a^(3)),(b,b^(2),1+b^(3)),(c,c^(2),1+c^(3)):}|`=0 Prove that abc =-1.

A

2

B

`-1`

C

`1`

D

0

Text Solution

Verified by Experts

The correct Answer is:
B

Since, `|(a,a^(2),1+a^(3)),(b,b^(2),1+b^(3)),(c,c^(2),a+c^(3))|=|(a,a^(2),1),(b,b^(2),1),(c,c^(2),1)|+|(a,a^(2),a^(3)),(b,b^(2),b^(3)),(c,c^(2),c^(3))|=0`
`implies |(a,a^(2),1),(b,b^(2),1),(c,c^(2),1)|=abc|(a,a^(2),1),(b,b^(2),1),(c,c^(2),1)|=0`
`implies (1+abc)|(a,a^(2),1),(b,b^(2),1),(c,c^(2),1)|=0" "[because|(a,a^(2),1),(b,b^(2),1),(c,c^(2),1)| ne 0]`
`implies 1+abc=0`
`implies abc=-1`
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise (Subjective Type Questions)|8 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

Prove the following identities : |{:(a,a^(2),a^(3)),(b,b^(2),b^(3)),(c,c^(2),c^(3)):}|=abc(a-b)(b-c)(c-a) .

If |a_(1)|gt|a_(2)|+|a_(3)|,|b_(2)|gt|b_(1)|+|b_(3)| and |c_(2)|gt|c_(1)|+|c_(2)| then show that |{:(a_(1),a_(2),a_(3)),(b_(1),b_(2),b_(3)),(c_(1),c_(2),c_(3)):}|ne0.

If a, b, c are sides of a triangle and |(a^2,b^2,c^2),((a+1)^2,(b+1)^2,(c+1)^2),((a-1)^2,(b-1)^2,(c-1)^2)|=0 then

if |{:(1,,1,,1),(a,,b,,c),(a^(3),,b^(3),,c^(3)):}|= (a-b)(b-c)(c-a)(a+b+c) where a,b,c are all different then the determinant |{:(1,,1,,1),((x-a)^(2),,(x-b)^(2),,(x-c)^(2)),((x-b)(x-c),,(x-c)(x-a),,(x-a)(x-b)):}| vanishes when

If a, b, c are the sides of Delta ABC such that 3^(2a^(2))-2*3^(a^(2)+b^(2)+c^(2))+3^(2b^(2)+2c^(2))=0 , then Triangle ABC is

If a,b,c are all non-zero and a+b+c=0, prove that a^2/(bc)+b^2/(ca)+c^2/(ab)=3 .

if a_(1)b_(1)c_(1), a_(2)b_(2)c_(2)" and " a_(3)b_(3)c_(3) are three-digit even natural numbers and Delta = |{:(c_(1),,a_(1),,b_(1)),(c_(2),,a_(2),,b_(2)),(c_(3),,a_(3),,b_(3)):}|" then " Delta is

Without expanding, prove that : |{:(1, bc, a(b+ c) ),(1, ca, b ( c+ a) ),(1, ab , c( a+ b)):}|=0 .