Home
Class 12
MATHS
Evaluate sum(m=1)^(oo)sum(n=1)^(oo)(m^(2...

Evaluate `sum_(m=1)^(oo)sum_(n=1)^(oo)(m^(2)n)/(3^(m)(n*3^(m)+m*3^(n)))`.

Text Solution

Verified by Experts

Let`S=sum_(m=1)^(oo)sum_(n=1)^(oo)(m^(2)n)/(3^(m)(n*3^(m)+m*3^(n)))`
`=sum_(m=1)^(oo)sum_(n=1)^(oo)(1)/(((3^(m))/(m))((3^(m))/(m)+(3^(n))/(n)))`
Now, let `a_(m)=(3^(m))/(m)" and "a_(n)=(3^(n))/(n)`
Then. `S=sum_(m=1)^(oo)sum_(n=1)^(oo)(1)/(a_(m)(a_(m)+a_(n))) " " "....(i)"`
By interchanging m and n, then
`S=sum_(m=1)^(oo)sum_(n=1)^(oo)(1)/(a_(n)(a_(n)+a_(m)))" " ".....(ii)"`
On adding Eqs. (i) and (ii), we get
`2S=sum_(m=1)^(oo)sum_(n=1)^(oo)(1)/(a_(m)a_(n))=sum_(m=1)^(oo)sum_(n=1)^(oo)(mn)/(3_(m)3_(n))`
`=(sum_(n=1)^(oo)(n)/(3^(n)))^(2)=[1((1)/(3))+2((1)/(3))^(2)+3((1)/(3))^(3)+"..."]^(2)`
`=(S')^(2)" " "......(iii)"`
where, `S'=1((1)/(3))+2((1)/(3))^(2)+3((1)/(3))^(3)+"...+"oo`
`((1)/(3ul)S'=1((1)/(3ul))^(2)+2((1)/(3ul))^(3)+" "+"...+"oo)/((2)/(3)S'=(1)/(3)+((1)/(3))^(2)+((1)/(3))^(3)+" "+"...+"oo)`
`=((1)/(3))/(1-(1)/(3))=(1)/(2)`
`:.S'=(3)/(4)`
From E q. (iii), we get `2s=((3)/(4))^(2)`
`S=(9)/(32)`
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    ARIHANT MATHS|Exercise Exercise For Session 1|5 Videos
  • SEQUENCES AND SERIES

    ARIHANT MATHS|Exercise Exercise For Session 2|11 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos
  • SETS, RELATIONS AND FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos

Similar Questions

Explore conceptually related problems

sum_(p=1)^(n) sum_(m=p)^(n) (("n"),("m"))(("m"),("p")) is equal to

The value of lim_(n to oo)(1)/(n).sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2))) is equal to

The value of lim_(n->oo)sum_(k=1)^n(6^k)/((3^k-2^k)(3^(k+1)-2^(k+1)) is equal to

If x= sum_(n=0)^(oo) a^n, y=sum_(n=0)^(oo) b^n, z= sum_(n=0)^(oo) c^n , where a ,b, c are in A.P. and |a|<1, |b| <1, |c|<1, then x,y,z are in :

The sequence a_(1),a_(2),a_(3),".......," is a geometric sequence with common ratio r . The sequence b_(1),b_(2),b_(3),".......," is also a geometric sequence. If b_(1)=1,b_(2)=root4(7)-root4(28)+1,a_(1)=root4(28)" and "sum_(n=1)^(oo)(1)/(a_(n))=sum_(n=1)^(oo)(b_(n)) , then the value of (1+r^(2)+r^(4)) is

The value of lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n) ,is

Let S be the sum of all possible determinants of order 2 having 0,1,2 and 3 as their elements,. Find the common root alpha of the equations x^(2)+ax+[m+1]=0, x^(2)+bx+[m+4]=0 and x^(2)-cx+[m+15]=0 such that alphagtS wherea+b+c=0 and m=lim_(n to 00)(1)/(n)sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2))) and [.] denotes the greates integer function.

The value of lim_(nto oo)(1^(3)+2^(3)+3^(3)+……..+n^(3))/((n^(2)+1)^(2))

Evaluate the following (i) lim_(n to oo)((1)/(n^(2))+(2)/(n^(2))+(3)/(n^(2))....+(n-1)/(n^(2))) (ii) lim_(n to oo)((1)/(n+1)+(1)/(n+2)+....+(1)/(2n)) (iii) lim_(n to oo)((n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+....+(n)/(2n^(2))) (iv) lim_(n to oo)((1^(p)+2^(p)+.....+n^(p)))/(n^(p+1)),pgt0

Consider an AP with a as the first term and d is the common difference such that S_(n) denotes the sum to n terms and a_(n) denotes the nth term of the AP. Given that for some m, n inN,(S_(m))/(S_(n))=(m^(2))/(n^(2))(nen) . Statement 1 d=2a because Statement 2 (a_(m))/(a_(n))=(2m+1)/(2n+1) .

ARIHANT MATHS-SEQUENCES AND SERIES-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Evaluate sum(m=1)^(oo)sum(n=1)^(oo)(m^(2)n)/(3^(m)(n*3^(m)+m*3^(n))).

    Text Solution

    |

  2. Let a,b,c be in A.P. and |a|lt1,|b|lt1|c|lt1.ifx=1+a+a^(2)+ . . . ."to...

    Text Solution

    |

  3. Evluate int (tan^(-1)x)/(1+x^2) dx

    Text Solution

    |

  4. If a1, a2, a3, be terms of an A.P. and (a1+a2+.....+ap)/(a1+a2+.....+...

    Text Solution

    |

  5. If a1, a2, a3,.....an are in H.P. and a1 a2+a2 a3+a3 a4+.......a(n-1...

    Text Solution

    |

  6. Let V(r ) denotes the sum of the first r terms of an arithmetic progre...

    Text Solution

    |

  7. Let Vr denote the sum of the first r terms of an arithmetic progressio...

    Text Solution

    |

  8. Let V(r ) denotes the sum of the first r terms of an arithmetic progre...

    Text Solution

    |

  9. LetA(1),G(1),H(1) denote the arithmetic, geometric and harmonic means ...

    Text Solution

    |

  10. Let A1 , G1, H1denote the arithmetic, geometric and harmonic means re...

    Text Solution

    |

  11. LetA(1),G(1),H(1) denote the arithmetic, geometric and harmonic means ...

    Text Solution

    |

  12. In a G.P of positive terms if any term is equal to the sum of the next...

    Text Solution

    |

  13. Suppose four distinct positive numbers a(1),a(2),a(3),a(4) are in G.P....

    Text Solution

    |

  14. The first two terms of a geometric progression add up to 12. The sum o...

    Text Solution

    |

  15. If the sum of first n terms of an A.P. is cn^(2) then the sum of squar...

    Text Solution

    |

  16. The sum to infinity of the series 1+2/3+6/3^2+14/3^4+...is

    Text Solution

    |

  17. Let Sk,k=1, 2, …. 100 denote the sum of the infinite geometric series ...

    Text Solution

    |

  18. Let a1, a2, a3, ,a(11) be real numbers satisfying a1=15 , 27-2a2>0 an...

    Text Solution

    |

  19. Check 2,4,6,8,10 are in A.P or not

    Text Solution

    |

  20. The minimum value of the sum of real numbers a^-5, a^-4, 3a^-3, 1,a^8 ...

    Text Solution

    |

  21. A man saves ₹ 200 in each of the first three months of his servies.In ...

    Text Solution

    |