Home
Class 12
MATHS
If for a sequence {a(n)},S(n)=2n^(2)+9n,...

If for a sequence `{a_(n)},S_(n)=2n^(2)+9n`, where `S_(n)` is the sum of n terms, the value of `a_(20)` is

A

65

B

75

C

87

D

97

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    ARIHANT MATHS|Exercise Exercise For Session 2|11 Videos
  • SEQUENCES AND SERIES

    ARIHANT MATHS|Exercise Exercise For Session 3|15 Videos
  • SEQUENCES AND SERIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos
  • SETS, RELATIONS AND FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos

Similar Questions

Explore conceptually related problems

Consider (1+x+x^(2)) ^(n) = sum _(r=0)^(2n) a_(r) x^(r) , "where " a_(0),a_(1), a_(2),…a_(2n) are real numbers and n is a positive integer. The value of a_(2) is

Let a_(n) = (1+1/n)^(n) . Then for each n in N

The nature of the S_(n)=3n^(2)+5n series is

The nth term of a series is given by t_(n)=(n^(5)+n^(3))/(n^(4)+n^(2)+1) and if sum of its n terms can be expressed as S_(n)=a_(n)^(2)+a+(1)/(b_(n)^(2)+b) where a_(n) and b_(n) are the nth terms of some arithmetic progressions and a, b are some constants, prove that (b_(n))/(a_(n)) is a costant.

For the S_(n)=3n^(2)+5n sequence, the number 5456 is the

Consider (1 + x + x^(2))^(n) = sum_(r=0)^(n) a_(r) x^(r) , where a_(0), a_(1), a_(2),…, a_(2n) are real number and n is positive integer. The value of sum_(r=0)^(n-1) a_(r) is

If a_(1)=2 and a_(n)=2a_(n-1)+5 for ngt1 , the value of sum_(r=2)^(5)a_(r) is

If a_(1),a_(2),a_(3),"….",a_(n) are in AP, where a_(i)gt0 for all I, the value of (1)/(sqrta_(1)+sqrta_(2))+(1)/(sqrta_(2)+sqrta_(3))+"....."+(1)/(sqrta_(n-1)+sqrta_(n)) is

Consider (1 + x + x^(2))^(n) = sum_(r=0)^(n) a_(r) x^(r) , where a_(0), a_(1), a_(2),…, a_(2n) are real number and n is positive integer. If n is odd , the value of sum_(r-1)^(2) a_(2r -1) is

Consider an AP with a as the first term and d is the common difference such that S_(n) denotes the sum to n terms and a_(n) denotes the nth term of the AP. Given that for some m, n inN,(S_(m))/(S_(n))=(m^(2))/(n^(2))(nen) . Statement 1 d=2a because Statement 2 (a_(m))/(a_(n))=(2m+1)/(2n+1) .