Home
Class 12
MATHS
If 0 lt theta lt pi/2, x= underset(n=0)o...

If `0 lt theta lt pi/2, x= underset(n=0)overset(oo)sum cos^(2n) theta, y= underset(n=0)overset(oo) sumsin^(2n) theta` and `z=underset(n=0)overset(oo)sum cos^(2n) theta* Sin^(2n) theta`, then show `xyz=xy+z`.

A

`xyz=xz+y`

B

`xyz=xy+z`

C

`xyz=x+y+z`

D

`xyz=yz+x`

Text Solution

Verified by Experts

The correct Answer is:
B, C

`:. 0ltphilt(pi)/(2)`
`:.0sinphi lt1` and `0ltcosphilt1`
`:.x=sum_(n=0)^(oo)cos^(2n) phi=1+cos^(2)phi+cos^(4)phi+"....."+oo`
`=(1)/(1-cos^(2)phi)=(1)/(sin^(2)phi)`
or `sin^(2)phi=(1)/(x)" " "…..(i)"`
and `y=sum_(n=0)^(oo)sin^(2n) phi=1+sin^(2)phi+sin^(4)phi+"....."+oo`
`=(1)/(1-sin^(2)phi)=(1)/(cos^(2)phi)`
or `cos^(2)phi=(1)/(y)" " ".....(ii)"`
From Eqs. (i) and (ii),
`sin^(2)phi+cos^(2)phi=(1)/(x)+(1)/(y)`
`1=(1)/(x)+(1)/(y)`
`:.xy=x+y" " "..........(iii)"`
and `z=sum_(n=0)^(oo)cos^(2n) phisin^(2)phi`
`=1+cos^(2)phisin^(2)phi+cos^(4)phisin^(4)phi+"......."`
`(1)/(1-sin^(2)phicos^(2)phi)=(1)/(1-(1)/(xy))[" from Eqs. (i)and (ii) "]`
`implies z=(xy)/(xy-1)`
`implies xyz=+xy`
and `xyz=z+x+y" " ["from Eq.(iii) "]`
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|24 Videos
  • SEQUENCES AND SERIES

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|10 Videos
  • SEQUENCES AND SERIES

    ARIHANT MATHS|Exercise Exercise (Single Option Correct Type Questions)|30 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos
  • SETS, RELATIONS AND FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos

Similar Questions

Explore conceptually related problems

The value of cot (underset(n=1)overset(23)sum cot^(-1) (1 + underset(k=1)overset(n)sum 2k)) is

Prove that underset(0)overset(pi//2)sqrt(costheta) sin^3 theta d theta = (8)/(21)

underset0 overset(pi//2)int sin^2x dx .

Prove that underset (r=0) overset (n) sum 3^r ""^nC_r =4^n .

Evaluate: underset0overset(pi//2)int cos^2xdx .

Evaluate: underset(0)overset(pi//2)intlog cos x dx

Evaluate the following: underset0 overset(pi//2) int sqrt(costheta sin^3theta dtheta) .

underset0overset(pi//2)int dx/(a^2cos^2x+b^2sin^2x)

underset0 overset(pi//2)int (sintheta)/sqrt(1+costheta) d theta

Prove that: underset0overset(pi//2)int f(sin2x)sinxdx=sqrt2 underset0overset(pi//4)int f(cos2x)cosxdx