Home
Class 12
MATHS
A 3 digit palindrome is a 3 digit number...

A 3 digit palindrome is a 3 digit number (not starting with zero) which reads the same backwards as forwards For example, 242. The sum of all even 3 digit palindromes is `2^(n_(1))*3^(n_(2))*5^(n_(3))*7^(n_(4))*11^(n_(5))*` value of `n_(1)+n_(2)+n_(3)+n_(4)+n_(5)` is

Text Solution

Verified by Experts

L:et number of the form palindrome be `alpha beta alpha`.
Now, If `alpha beta alpha` is even, then `alpha` may be `2,4,6,8` and `beta` take values `0,1,2,"……"9`.
So, total number of palindrime (even) `=10xx4=40`
To find the sum of all even 3 digit plaindrome
So, sum of number start with 2
`=(200+2)xx10+(0+1+2+3+"......"+9)xx10=2020+450=2470`
Sum of number srart with `4=(404)xx10+450`
Similarly, sum of number start with `6=(606)xx10+450`
Similarly, sum of number start with `8=(808)xx10+450`
`:.` Total sum `=(202+404+606+808)xx10+450xx4`
`=20200+1800=22000`
`=2^(4)xx5^(3)xx11`
On comparing `2^(4)xx5^(3)xx11^(1)` with
`2^(n_(1))xx3^(n_(2))xx5^(n_(3))xx7^(n_(4))xx11^(n_(5))`
`n_(1)=4,n_(2)=3,n_(3)=0,n_(4)0,n_(5)=1`
Now, `n_(1)+n_(2)+n_(3)+n_(4)+n_(5)=8`.
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    ARIHANT MATHS|Exercise Exercise (Matching Type Questions)|3 Videos
  • SEQUENCES AND SERIES

    ARIHANT MATHS|Exercise Matching Type Questions|1 Videos
  • SEQUENCES AND SERIES

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|24 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos
  • SETS, RELATIONS AND FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos

Similar Questions

Explore conceptually related problems

If .^(2n)C_(3):^(n)C_(3)=11:1 , find the value of n.

lim_(n rarr oo)(3.2^(n+1)-4.5^(n+1))/(5.2^(n)+7.5^(n)) =

Sum of last three digits of the number N=7^(100)-3^(100) is.

Find the value of n , if (2n - 1)/(n - 2) = 3

The total number of five-digit numbers of different digits in which the digit in the middle is the largest is a. sum_(n=4)^9 ^n P_4 b. 33(3!) c. 30(3!) d. sum_(n=3)^8 n^n P_3

Find the value of (3^n × 3^(2n + 1))/(3^(2n) × 3^(n - 1))

Find the value of n , if ((2n)! (n - 3)!)/((2n - 3)! n!) = 11

Determine the value of n if ^(n)C_3: ^nC_2=5:1 .

Prove that .^(n-1)C_(3)+.^(n-1)C_(4) gt .^(n)C_(3) if n gt 7 .

Evaluate sum_(m=1)^(oo)sum_(n=1)^(oo)(m^(2)n)/(3^(m)(n*3^(m)+m*3^(n))) .