Home
Class 12
MATHS
If A =[{:(0,1,0),(0,0,1),(p,q,r):}], sho...

If A `=[{:(0,1,0),(0,0,1),(p,q,r):}]`, show that ltbargt `A^(3)= pI+qA+rA^(2)`

Text Solution

Verified by Experts

we have, `A(2)=A.A`
`[(0,1,0),(0,0,1),(p,q,r)]xx[(0,1,0),(0,0,1),(p,q,r)]`
`[(0,0,1),(p,q,r),(pr,p+qr,q+r^(2))]`
`therefore (3)=A^(2)=[(0,1,1),(p,q,r),(pr,p+qr,q+r^(2))]xx[(0,1,0),(0,0,1),(p,q,r)]`
`=[(p,q,r),(pr,p+qr,q+r^(2)),(pq+r^(2)p,pr+q^(2)+qr^(2),p+2qr+r^(3))]" "therefore(i)`
and `pI+qA+rA^(2) =p[(1,0,0),(0,1,0),(0,0,1)]+q[(0,1,0),(0,0,1),(p,q,r)]+r[(0,0,1),(p,q,r),(pr,p+qr,q+r^(2))]`
`[(p+0+0,0+q+0,0+0+r),(0+0+pr,p+0+qr,0+q+r^(2)),(0+pq+pr^(2),0+q^(2)+pr+qr^(2),p+2qr+r^(3))]`
`[(p,q,r),(pr,p+qr,q+r^(3)),(pq+pr^(2),q^(2)+pr+qr^(2),p+2qr+r^(3))]" "therefore(ii)`
thus, from Eqs. (i) and (ii), we get `A = pI+qA+rA^(2)`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS|Exercise Exercise For Session 1|9 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Exercise For Session 2|19 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|31 Videos

Similar Questions

Explore conceptually related problems

If A = [(-1,2,0),(-1,1,1),(0,1,0)] , show that A^2 = A^-1

If A=|(3,-1,-2),(0,0,-1),(3,-5,0)| , show that |2A| = 8|A|

If A=[(-1,2,0),(-1,1,1),(0,1,0)] , show that A^3=I , Also Find A^-1

Find A^(-1) if A=[(0,1,1),(1,0,1),(1,1,0)] and show that A^(-1)=(A^2-3I)/2

If A = [[1,0,1],[0,1,2],[0,0,4]] then show that |3A| = 27|A|

If A = [(5,2),(-1,2)] and I = [(1,0),(0,1)] show that (A - 3I) (A - 4I) = 0

If A = {:[(3,1,-1),(0,1,2)] , then show that AA' is a symmetric matrix.

If P = {:[(0,1,0),(0,2,1),(2,3,0)], Q = [(1,2),(3,0),(4,1)] , find PQ.

If A= [3,2,0],[1,4,0][0,0,5] , then show that A^2 −7A+10I3 =0

ARIHANT MATHS-MATRICES -Exercise (Questions Asked In Previous 13 Years Exam)
  1. If A =[{:(0,1,0),(0,0,1),(p,q,r):}], show that ltbargt A^(3)= pI+qA+rA...

    Text Solution

    |

  2. Let A=[(1,0,0),(0,1,1),(0,-2,4)],I=[(1,0,0),(0,1,0),(0,0,1)] and A^-1=...

    Text Solution

    |

  3. Evluate int 3x^2 dx

    Text Solution

    |

  4. If A=[(1,0),(1,1)] and I=[(1,0),(0,1)] then which one of the following...

    Text Solution

    |

  5. If A^(2)-A+I=O, then A^(-1) is equal to

    Text Solution

    |

  6. Let {:A=[(1,0,0),(2,1,0),(3,2,1)]:}and U1,U2,U3 be column matrices sat...

    Text Solution

    |

  7. Let A = [(1,0,0), (2,1,0), (3,2,1)], and U1, U2 and U3 are columns of ...

    Text Solution

    |

  8. If A= ((1,0,0),(2,1,0),(3,2,1)), U(1), U(2), and U(3) are column matri...

    Text Solution

    |

  9. Let A=[{:(1,2),(3,4):}]and B = [{:(a,0),(0,b):}] where a, b are natura...

    Text Solution

    |

  10. If A and B are square matrices of size nxxn such that A^2-B^2 = (A-B)(...

    Text Solution

    |

  11. Let A= [[5,5alpha,alpha],[0,alpha,5alpha],[0,0,5]] . If |A^2|...

    Text Solution

    |

  12. Let A and B be 3xx3 matrtices of real numbers, where A is symmetric, "...

    Text Solution

    |

  13. Let A be a square matrix all of whose entries are integers. Then wh...

    Text Solution

    |

  14. Let A be a 2xx2 matrix with real entries. Let I be the 2xx2 identi...

    Text Solution

    |

  15. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  16. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  17. The number of 3xx3 matrices A whose are ether 0 or 1 and for which t...

    Text Solution

    |

  18. Let A be a 2xx2 matrix Statement -1 adj (adjA)=A Statement-2 abs(a...

    Text Solution

    |

  19. The number of 3xx3 matrices a whose entries are either 0 or 1 and for ...

    Text Solution

    |

  20. Let P be an odd prime number and T(p) be the following set of 2xx2 mat...

    Text Solution

    |

  21. Let p be an odd prime number and T(P) be the following set of 2xx2 m...

    Text Solution

    |