Home
Class 12
MATHS
If omega!=1 is a complex cube root of un...

If `omega!=1` is a complex cube root of unity, then prove that `[{:(1+2omega^(2017)+omega^(2018)," "omega^(2018),1),(1,1+2omega^(2018)+omega^(2017),omega^(2017)),(omega^(2017),omega^(2018),2+2omega^(2017)+omega^(2018)):}]`is singular

Text Solution

Verified by Experts

Let `A=[{:(1+2omega^(2017)+omega^(2018)," "omega^(2018),1),(1,1+2omega^(2018)+omega^(2017),omega^(17)),(omega^(17),omega^(18),2+2omega^(2017)+omega^(2018)):}]`
` therefore" " omega^(3)=1rArr omega^(2017)=omega`
and `omega^(2018)=omega^(2)` then
`[(1+2omega+omega^(2),omega^(2),1),(1,1+omega^(2)+2omega,omega),(omega,omega^(2),2+omega+2omega^(2))]`
`=[(omega,omega^(2),1),(1,omega,omega),(omega,omega^(2),-omega)]" " [therefore1+omega+omega^(2)=0]`
Now, `|A|= [(omega,omega^(2),1),(1,omega,omega),(omega,omega^(2),-omega)]= omega[(omega,omega,1),(1,1,omega),(omega,omega,-omega)]=0 thus, `|A|=0.` Hence, A is singular matrix.
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS|Exercise Exercise For Session 1|9 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Exercise For Session 2|19 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|31 Videos

Similar Questions

Explore conceptually related problems

Prove that: L = I omega

If omegane1 is the complex cube root of unity and matix H = {:[(omega,0),(0,omega)] , then H^70 is equal to

If omega is cube root of unity, then a root of the equation |(x + 1,omega, omega^2),(omega, x + omega , 1),(omega^2 , 1, x + omega)| = 0 is

If omega(ne1) is a cube root of unity, then (1-omega+omega^(2))(1-omega^(2)+omega^(4))(1-omega^(4)+omega^(8)) …upto 2n is factors, is

If omega = (-1+sqrt3i)/2 , find the value of |(1, omega, omega^2),(omega, omega^2, 1),(omega^2, 1 , omega)|

If omega^(3)=1 and omega ne1 , then (1+omega)(1+omega^(2))(1+omega^(4))(1+omega^(5)) is equal to

Show that a=r omega^(2) .

Let omega be a complex number such that 2omega+1=z where z=sqrt(-3) . If [(1,1,1), (1, -omega^(2)-1 , omega^(2)),(1, omega^(2) , omega^(7))]=3k , then k is equal to

If omega is a cube root of unity and (1+omega)^7=A+Bomega then find the values of A and B

Let omega=-(1)/(2)+i(sqrt(3))/(2) . Then the value of the determinant |{:(1,1,1),(1,-1-omega^(2),omega^(2)),(1, omega^(2), omega^(4)):}| is

ARIHANT MATHS-MATRICES -Exercise (Questions Asked In Previous 13 Years Exam)
  1. If omega!=1 is a complex cube root of unity, then prove that [{:(1+2o...

    Text Solution

    |

  2. Let A=[(1,0,0),(0,1,1),(0,-2,4)],I=[(1,0,0),(0,1,0),(0,0,1)] and A^-1=...

    Text Solution

    |

  3. Evluate int 3x^2 dx

    Text Solution

    |

  4. If A=[(1,0),(1,1)] and I=[(1,0),(0,1)] then which one of the following...

    Text Solution

    |

  5. If A^(2)-A+I=O, then A^(-1) is equal to

    Text Solution

    |

  6. Let {:A=[(1,0,0),(2,1,0),(3,2,1)]:}and U1,U2,U3 be column matrices sat...

    Text Solution

    |

  7. Let A = [(1,0,0), (2,1,0), (3,2,1)], and U1, U2 and U3 are columns of ...

    Text Solution

    |

  8. If A= ((1,0,0),(2,1,0),(3,2,1)), U(1), U(2), and U(3) are column matri...

    Text Solution

    |

  9. Let A=[{:(1,2),(3,4):}]and B = [{:(a,0),(0,b):}] where a, b are natura...

    Text Solution

    |

  10. If A and B are square matrices of size nxxn such that A^2-B^2 = (A-B)(...

    Text Solution

    |

  11. Let A= [[5,5alpha,alpha],[0,alpha,5alpha],[0,0,5]] . If |A^2|...

    Text Solution

    |

  12. Let A and B be 3xx3 matrtices of real numbers, where A is symmetric, "...

    Text Solution

    |

  13. Let A be a square matrix all of whose entries are integers. Then wh...

    Text Solution

    |

  14. Let A be a 2xx2 matrix with real entries. Let I be the 2xx2 identi...

    Text Solution

    |

  15. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  16. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  17. The number of 3xx3 matrices A whose are ether 0 or 1 and for which t...

    Text Solution

    |

  18. Let A be a 2xx2 matrix Statement -1 adj (adjA)=A Statement-2 abs(a...

    Text Solution

    |

  19. The number of 3xx3 matrices a whose entries are either 0 or 1 and for ...

    Text Solution

    |

  20. Let P be an odd prime number and T(p) be the following set of 2xx2 mat...

    Text Solution

    |

  21. Let p be an odd prime number and T(P) be the following set of 2xx2 m...

    Text Solution

    |