Home
Class 12
MATHS
If A=[(k,l),(m,n)] and kn!=lm, show that...

If `A=[(k,l),(m,n)]` and `kn!=lm,` show that `A^(2)-(k+n)A+(kn-lm)l=O.` Hence, find `A^(-1)`

Text Solution

Verified by Experts

We, have, `A[(k,l),(m,n)]`, then `|A|=|(k,l),(m,n)|`
`=kn-ml!=0`
`therefore" " A^(-1) exists.`
Now, `A^(2)=A.A=[(k,l),(m,n)][(k,l)(m,n)=[(k^(2)+lm,kl+ln),(mk+nm,ml+n^(2))]`
`therefore " " A^(2)-(k+n)A+(kn-lm)I`
`= [(k^(2)+lm,kl+ln),(mk+nm,ml+n^(2))]-[(k-n)[(k,l),(m,n)]+(kn-lm)[(1,0),(0,1)]`
`= [(k^(2)+lm,kl+ln),(mk+nm,ml+n^(2))][(k^(2)+nk,kl+nl),(km+nm,kn+n^(2))] +[(kn-lm,0),(0,kn-lm)]`
`[(k^(2)+lm-K^(2)-nk+kn-lm,kl+ln-kl-ln),(mk+nm-km-nm,ml+n^(2)-kn-n^(2)+kn-lm)]`
`[(0,0),(0,0)]=O`
`AsA^(2)-(k+n)A+(kn-lm)I=O`
`rArr" " (kn-lm)I=(k+n)A-A^(2)`
`rArr" " (kn-lm)IA^(-1)=(k+n)A-A^(2))A^(-1)`
`rArr" " (kn-lm)A^(-1)=(k+n)A A^(-1)-A(A A^(-1))`
`=(k+n)I-AI`
`=(k+n)I-A`
`=(k+n)[(1,0),(0,1)]-[(k,l),(m,n)]`
`=[(k+n,0),(0,k+n)]-[(k,l),(m,n)]`
` rArr " " (kn-lm)A^(-1)=[(n,-1),(-m,k)]`
Hence `A^(-1)=(1)/((kn-lm))[(n,-1),(-m,k)]`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS|Exercise Exercise For Session 1|9 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Exercise For Session 2|19 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|31 Videos

Similar Questions

Explore conceptually related problems

If 1/(1+l)=v , prove that : v+v^(2)+v^(3)+………+v^(n)=(1-v^(n))/l .

If ltl,m,n,gt are D. cosines of a line then l^(2)+m^(2)+n^(2)=

If cosectheta-sintheta=l , and sectheta-costheta=m , show that l^2m^2(l^2+m^2+3)=1 .

If a_(1)=1 and a_(n+1)=(4+3a_(n))/(3+2a_(n)),nge1 , show that a_(n+2)gea_(n+1) and if a lim l as n to oo the evaluate lim_(ntooo)a_(n)

If l_(n)=int_(0)^((pi)/(4)) tan^(n) xdx show that (1)/(l_(2)+l_(4)),(1)/(l_(3)+l_(5)),(1)/(l_(4)+l_(6)),(1)/(l_(5)+l_(7)),"...." from an AP. Find its common difference.

If l,m and n are three straight lines such that l||m and l||n then prove that m||n .

If A = [[l_(1),m_(1),n_(1)],[l_(2),m_(2),n_(2)],[l_(3),m_(3),n_(3)]] then Find A+I

Classify the polynomials as monomlals, binomials, trinomials. Whish polynomials do not fit in any these three categories ? Add the l ^(2) + m ^(2) , n ^(2) , n ^(2) + l ^(2) , 2lm + 2 mn + 2 nl

If l and m are variable real numbers such that 5l^2-4lm+6m^2+3l=0 , then the variable line lx+my=1 always touches a fixed parabola, whose axis is parallel to the X-axis. If (c,d) is the focus of the parabola , then the value of 2^|d-c| is

If k in R_o then det{a d j(k I_n)} is equal to a. K^(n-1) b. K^(n(n-1)) c. K^n d. k

ARIHANT MATHS-MATRICES -Exercise (Questions Asked In Previous 13 Years Exam)
  1. If A=[(k,l),(m,n)] and kn!=lm, show that A^(2)-(k+n)A+(kn-lm)l=O. Hen...

    Text Solution

    |

  2. Let A=[(1,0,0),(0,1,1),(0,-2,4)],I=[(1,0,0),(0,1,0),(0,0,1)] and A^-1=...

    Text Solution

    |

  3. Evluate int 3x^2 dx

    Text Solution

    |

  4. If A=[(1,0),(1,1)] and I=[(1,0),(0,1)] then which one of the following...

    Text Solution

    |

  5. If A^(2)-A+I=O, then A^(-1) is equal to

    Text Solution

    |

  6. Let {:A=[(1,0,0),(2,1,0),(3,2,1)]:}and U1,U2,U3 be column matrices sat...

    Text Solution

    |

  7. Let A = [(1,0,0), (2,1,0), (3,2,1)], and U1, U2 and U3 are columns of ...

    Text Solution

    |

  8. If A= ((1,0,0),(2,1,0),(3,2,1)), U(1), U(2), and U(3) are column matri...

    Text Solution

    |

  9. Let A=[{:(1,2),(3,4):}]and B = [{:(a,0),(0,b):}] where a, b are natura...

    Text Solution

    |

  10. If A and B are square matrices of size nxxn such that A^2-B^2 = (A-B)(...

    Text Solution

    |

  11. Let A= [[5,5alpha,alpha],[0,alpha,5alpha],[0,0,5]] . If |A^2|...

    Text Solution

    |

  12. Let A and B be 3xx3 matrtices of real numbers, where A is symmetric, "...

    Text Solution

    |

  13. Let A be a square matrix all of whose entries are integers. Then wh...

    Text Solution

    |

  14. Let A be a 2xx2 matrix with real entries. Let I be the 2xx2 identi...

    Text Solution

    |

  15. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  16. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  17. The number of 3xx3 matrices A whose are ether 0 or 1 and for which t...

    Text Solution

    |

  18. Let A be a 2xx2 matrix Statement -1 adj (adjA)=A Statement-2 abs(a...

    Text Solution

    |

  19. The number of 3xx3 matrices a whose entries are either 0 or 1 and for ...

    Text Solution

    |

  20. Let P be an odd prime number and T(p) be the following set of 2xx2 mat...

    Text Solution

    |

  21. Let p be an odd prime number and T(P) be the following set of 2xx2 m...

    Text Solution

    |