Home
Class 12
MATHS
Let A = [[0,1],[0,0]] , show that (aI + ...

Let `A = [[0,1],[0,0]]` , show that `(aI + bA)^n = a^nI + na^(n-1) bA`, where I is the identity matrix of order 2 and`n in N`

Text Solution

Verified by Experts

Let `p(n):(aI+ba)^(n)=a^(n)I+na^(n-1)ba`
step I for `n=1`
`LHS= (aI+ba)^(1) =aI+ba`
and RHS `= a^(1)I+1.a^(0) ba=aI+ba`
LHS=RHS
therefore, `p(1) is true.
step II Assume that `p(k) is true , then
`p(k): (aI+ba)^(k) I+ka^(k-1)ba`
step III for `n=k+1,` we have to prove that
`p(k+1):(aI+ba)^(k+1)k=a^(k+1) I+(k+I) a^(k)bA `
LHS `=(aI+bA)^(k+1) = (aI+bA)^(k) (aI+bA)`
`=a^(k+1) I^(2) + a^(k)b (IA) + ka^(k)b (AI)+k a^(k-1)b^(2) A^(2)`
`=a^(k+1) I+(k+1)a^(k)b A+0`
`[therefore AI=A,A^(2)=0and I^(2) = I]`
`=a^(k+1)I+(k+1)a^(k)bA=RHS`
therefore, `P(k+1)` is true.
Hence, by the principal of mathematical12 induction `p(n)` is true for all n `in` N.
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS|Exercise Exercise For Session 1|9 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Exercise For Session 2|19 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|31 Videos

Similar Questions

Explore conceptually related problems

Let A=[[0,1],[0,0]] , prove that: (aI+bA)^n = a^(n-1) bA , where I is the unit matrix of order 2 and n is a positive integer.

Matrix A such that A^(2)=2A-I , where I is the identity matrix, then for n ge 2, A^(n) is equal to

Let A and B be matrices of order n. Prove that if (I - AB) is invertible, (I - BA) is also invertible and (I-BA)^(-1) = I + B (I- AB)^(-1)A, where I be the identity matrix of order n.

Suppose A and B be two ono-singular matrices such that AB= BA^(m), B^(n) = I and A^(p) = I , where I is an identity matrix. If m = 2 and n = 5 then p equals to

Suppose A and B be two ono-singular matrices such that AB= BA^(m), B^(n) = I and A^(p) = I , where I is an identity matrix. Which of the following orderd triplet (m, n, p) is false?

If A=[[i,0],[0,-i]] and B=[[0,i],[i,0]] , show that AB !=BA .

If A^(n) = 0 , then evaluate (i) I+A+A^(2)+A^(3)+…+A^(n-1) (ii) I-A + A^(2) - A^(3) +... + (-1) A^(n-1) for odd 'n' where I is the identity matrix having the same order of A.

If M is a 3xx3 matrix, where det M=1a n dM M^T=1,w h e r eI is an identity matrix, prove theat det (M-I)=0.

Let A be a nxxn matrix such that A ^(n) = alpha A, where alpha is a real number different from 1 and - 1. The matrix A + I_(n) is

ARIHANT MATHS-MATRICES -Exercise (Questions Asked In Previous 13 Years Exam)
  1. Let A = [[0,1],[0,0]] , show that (aI + bA)^n = a^nI + na^(n-1) bA, w...

    Text Solution

    |

  2. Let A=[(1,0,0),(0,1,1),(0,-2,4)],I=[(1,0,0),(0,1,0),(0,0,1)] and A^-1=...

    Text Solution

    |

  3. Evluate int 3x^2 dx

    Text Solution

    |

  4. If A=[(1,0),(1,1)] and I=[(1,0),(0,1)] then which one of the following...

    Text Solution

    |

  5. If A^(2)-A+I=O, then A^(-1) is equal to

    Text Solution

    |

  6. Let {:A=[(1,0,0),(2,1,0),(3,2,1)]:}and U1,U2,U3 be column matrices sat...

    Text Solution

    |

  7. Let A = [(1,0,0), (2,1,0), (3,2,1)], and U1, U2 and U3 are columns of ...

    Text Solution

    |

  8. If A= ((1,0,0),(2,1,0),(3,2,1)), U(1), U(2), and U(3) are column matri...

    Text Solution

    |

  9. Let A=[{:(1,2),(3,4):}]and B = [{:(a,0),(0,b):}] where a, b are natura...

    Text Solution

    |

  10. If A and B are square matrices of size nxxn such that A^2-B^2 = (A-B)(...

    Text Solution

    |

  11. Let A= [[5,5alpha,alpha],[0,alpha,5alpha],[0,0,5]] . If |A^2|...

    Text Solution

    |

  12. Let A and B be 3xx3 matrtices of real numbers, where A is symmetric, "...

    Text Solution

    |

  13. Let A be a square matrix all of whose entries are integers. Then wh...

    Text Solution

    |

  14. Let A be a 2xx2 matrix with real entries. Let I be the 2xx2 identi...

    Text Solution

    |

  15. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  16. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  17. The number of 3xx3 matrices A whose are ether 0 or 1 and for which t...

    Text Solution

    |

  18. Let A be a 2xx2 matrix Statement -1 adj (adjA)=A Statement-2 abs(a...

    Text Solution

    |

  19. The number of 3xx3 matrices a whose entries are either 0 or 1 and for ...

    Text Solution

    |

  20. Let P be an odd prime number and T(p) be the following set of 2xx2 mat...

    Text Solution

    |

  21. Let p be an odd prime number and T(P) be the following set of 2xx2 m...

    Text Solution

    |